Results 21 to 30 of about 5,206 (257)
Multi-agent reinforcement learning based dynamic optimization algorithm of CRE offset for heterogeneous networks [PDF]
To cope with the high throughput demand caused by the proliferation of wireless network users, a multi-agent reinforcement learning based dynamic optimization algorithm of cell range expansion (CRE) offset was proposed for interference scenarios in macro-
Cheng ZHANG+3 more
core +1 more source
群体智能是大规模人类群体和机器集群通过网络交互协作,相互赋能,持续学习,涌现出超越人类个体和机器单体的智能。群体智能在智能化信息服务、软件开发、众包创作、医疗健康、社会行为分析、交通出行、侦察监视、群智机器人等多个领域已经受到学术界和工业界的广泛关注,并成为国家人工智能发展的重要方向之一。对群体智能的深入研究有助于推动改善人与人、人与机器、人与物理世界、机器与机器间的关系。 为了及时掌握该领域的研究热点和技术动态,推动群体智能领域的快速发展,促进学术交流和技术创新,《智能科学与技术学报》发起了 ...
王怀民
doaj +1 more source
在多智能体强化学习的研究中,参数共享作为学习过程中一种信息集中的方式,可以有效地缓解不稳定性导致的学习低效性。但是,在实际应用中智能体使用同样的策略往往会带来不利影响。为了解决此类过度共享的问题,提出了一种新的方法来赋予智能体自动识别可能受益于共享参数的智能体的能力,并且可以在学习过程中动态地选择共享参数的对象。具体来说,智能体需要将历史轨迹编码为可表示其潜在意图的隐信息,并通过与其余智能体隐信息的对比选择共享参数的对象。实验表明,提出的方法在多智能体系统中不仅可以提高参数共享的效率 ...
王涵, 俞扬, 姜远
doaj +1 more source
Adaptive pilot design for OFDM based on deep reinforcement learning [PDF]
For orthogonal frequency division multiplexing (OFDM) systems, an adaptive pilot design algorithm based on deep reinforcement learning was proposed.The pilot design problem was formulated as a Markov decision process, where the index of pilot positions ...
Qiaoshou LIU+3 more
core +1 more source
Security decision method for the edge of multi-layer satellite network based on reinforcement learning [PDF]
Objectives: Multi-layer satellite network is an important component of space-ground integration technology.The purpose of this paper is to rely on the autonomous decision ability of satellite nodes to give full play to the processing and backhaul tasks ...
Chao GUO+4 more
core +1 more source
以机器人为代表的自主智能体系统在工业、服务业等众多领域具有广泛的应用前景和重要的应用价值,但现有自主智能体系统在运动灵巧性、感知信息的完备性、复杂任务和环境的适应性等方面都面临巨大的挑战,难以在开放环境下像人一样灵巧、精准地完成各种复杂操作。而随着以深度学习、深度强化学习为代表的人工智能技术的成功,以操作技能学习为核心的理论研究成为突破自主智能体精准灵巧操作的重要方向,在汲取、融汇联结主义和符号主义的思想精华后构建的操作技能学习框架有望取代传统的示教编程、手工编程模式,以自主学习 ...
王硕
doaj +1 more source
微网在分布式新能源消纳、负荷优化、提高能源利用效率等方面具有重要作用。但新能源出力的间歇性、负荷侧用电行为的随机性导致微网成为一个动态的复杂系统,难以通过准确的物理模型刻画,给微网优化运行带来巨大挑战。深度强化学习(deep reinforcement learning,DRL)通过与环境交互试错寻找最优策略,不依赖于新能源出力和负荷的精确建模,适用于解决序贯决策问题,在求解含有大量不确定性的微网优化运行难题时具有优势。为此,从DRL原理、DRL在单个微网以及微网群优化运行中的应用进行了综述与分析 ...
周翔, 王继业, 陈盛, 王新迎
doaj +1 more source
轴孔装配是加工制造业常见的一类操作任务。基于工业机器人研究轴孔自动装配,对于机器人在装配领域的应用具有重要价值。对于高精密和形状复杂的零件,高效可靠的轴孔装配仍然具有很大挑战性。基于此,从控制的角度对机器人自动轴孔装配进行了全面梳理。首先,介绍了机器人自动轴孔装配过程。然后,在对基于传统模型的装配控制进行论述的基础上,对新兴的基于学习的智能装配控制进行了讨论,重点阐述了模仿学习和强化学习在机器人自动装配中的应用。传统方法与人工智能方法的结合,将为机器人自动轴孔装配注入新的活力,将成为未来的重要发展趋势。
徐德, 秦方博
doaj +1 more source
IEEE 802.15.4 differentiated service strategy based on reinforcement-learning [PDF]
To provide better support in differentiated service for IEEE 802.15.4,a novel differentiated service mechanism was proposed based on BCS(back off counter scheme)and reinforcement learning.In terms of end-device,BCS backoff strategy was added to original ...
Liang QIAN+3 more
core +1 more source
Joint beam hopping and coverage control optimization algorithm for multibeam satellite system [PDF]
To improve the performance of multibeam satellite (MBS) systems, a deep reinforcement learning-based algorithm to jointly optimize the beam hopping and coverage control (BHCC) algorithm for MBS was proposed.Firstly, the resource allocation problem in MBS
Feng CHEN+3 more
core +1 more source