Results 21 to 30 of about 4,328 (167)
Off-policy Maximum Entropy Deep Reinforcement Learning Algorithm Based on RandomlyWeighted Triple Q -Learning [PDF]
Reinforcement learning is an important branch of machine learning.With the development of deep learning,deep reinforcement learning research has gradually developed into the focus of reinforcement learning research.Model-free off-policy deep ...
FAN Jing-yu, LIU Quan
core +1 more source
群体智能是大规模人类群体和机器集群通过网络交互协作,相互赋能,持续学习,涌现出超越人类个体和机器单体的智能。群体智能在智能化信息服务、软件开发、众包创作、医疗健康、社会行为分析、交通出行、侦察监视、群智机器人等多个领域已经受到学术界和工业界的广泛关注,并成为国家人工智能发展的重要方向之一。对群体智能的深入研究有助于推动改善人与人、人与机器、人与物理世界、机器与机器间的关系。 为了及时掌握该领域的研究热点和技术动态,推动群体智能领域的快速发展,促进学术交流和技术创新,《智能科学与技术学报》发起了 ...
王怀民
doaj +1 more source
Deception defense method against intelligent penetration attack [PDF]
The intelligent penetration attack based on reinforcement learning aims to model the penetration process as a Markov decision process, and train the attacker to optimize the penetration path in a trial-and-error manner, so as to achieve strong attack ...
Changyou XING +3 more
core +1 more source
简要地评论了强化学习的历史、现状与未来的发展途径,认为强化学习应从先行后知、先知后行向知行合一的平行强化学习迈进,实现在虚拟世界“吃一堑”,在物理世界“长一智”,真正成为智慧机制和智能算法的基础学习理论。
王飞跃, 曹东璞, 魏庆来
doaj
Deep Reinforcement Learning-driven Cross-Community Energy Interaction Optimal Scheduling
In order to coordinate energy interactions among various communities and energy conversions among multi-energy subsystems within the multi-community integrated energy system under uncertain conditions, and achieve overall optimization and scheduling of ...
Bu, Fanjin +5 more
core
Maritime mobile edge computing offloading method based on deep reinforcement learning [PDF]
The strong heterogeneity among the network nodes of the maritime information system brings complex and high-dimensional constraints for optimizing task offloading of the maritime mobile edge computing.The complex and diverse maritime applications also ...
Leilei MENG +3 more
core +1 more source
深度强化学习主要被用来处理感知-决策问题,已经成为人工智能领域重要的研究分支。概述了基于值函数和策略梯度的两类深度强化学习算法,详细阐述了深度Q网络、深度策略梯度及相关改进算法的原理,并综述了深度强化学习在视频游戏、导航、多智能体协作以及推荐系统等领域的应用研究进展。最后,对深度强化学习的算法和应用进行展望,针对一些未来的研究方向和研究热点给出了建议。
刘朝阳, 穆朝絮, 孙长银
doaj
Deep reinforcement learning-based resource reservation algorithm for emergency Internet-of-things slice [PDF]
Based on the requirements of ultra-low latency services for emergency Internet-of-things (EIoT) applications,a multi-slice network architecture for ultra-low latency emergency IoT was designed,and a general methodology framework based on resource ...
Guisong LIU, Guolin SUN, Ruijie OU
core +1 more source
ABSTRACT The high accuracy in surface‐enhanced Raman scattering‐lateral flow immunoassays (SERS–LFIAs) is critical for reliable point‐of‐care testing (POCT) in clinical diagnostics. Conventional approaches are often affected by sampling variability and uneven distribution of immunoprobes, leading to unreliable signal fluctuations.
Shuai Zhao +9 more
wiley +1 more source
研究了基于深度强化学习算法的自主式水下航行器(AUV)深度控制问题。区别于传统的控制算法,深度强化学习方法让航行器自主学习控制律,避免人工建立精确模型和设计控制律。采用深度确定性策略梯度方法设计了actor与critic两种神经网络。actor神经网络给出控制策略,critic神经网络用于评估该策略,AUV的深度控制可以通过训练这两个神经网络实现。在OpenAI Gym平台上仿真验证了算法的有效性。
王日中, 李慧平, 崔迪, 徐德民
doaj

