Results 31 to 40 of about 124 (74)
The multiplicative sum Zagreb index of a graph G is defined as the product of the sum of the degrees of adjacent vertices of G. A molecular tree is an acyclic connected graph with maximum degree at most 4. A vertex in a molecular tree with degree 3 or 4 is referred to as a branching vertex. In this paper, we consider the class of all molecular trees of
Sadia Noureen +6 more
wiley +1 more source
Estrada index of hypergraphs via eigenvalues of tensors
A uniform hypergraph $\mathcal{H}$ is corresponding to an adjacency tensor $\mathcal{A}_\mathcal{H}$. We define an Estrada index of $\mathcal{H}$ by using all the eigenvalues $\lambda_1,\dots,\lambda_k$ of $\mathcal{A}_\mathcal{H}$ as $\sum_{i=1}^k e ...
Bu, Changjiang, Sun, Lizhu, Zhou, Hong
core
In its crystalline state, the α‐icosahedral nanosheet of boron demonstrates superconductivity and thermal electronic properties. Mathematical research on a graph’s structure yields a graph descriptor, a numerical measure. Chemical graph theory employs connectivity descriptors to analyze molecular structures, providing crucial insights into many ...
Khalil Hadi Hakami +3 more
wiley +1 more source
Some new bounds on resolvent energy of a graph
Let GG be a simple graph of order nn with eigenvalues λ1≥λ2≥…≥λn.{\lambda }_{1}\ge {\lambda }_{2}\ge \ldots \ge {\lambda }_{n}. The resolvent energy of GG is a spectrum-based graph invariant defined as ER(G)=∑i=1n(n−λi)−1.{\rm{ER}}(G)={\sum }_{i=1}^{n ...
Altındağ İlkay +1 more
doaj +1 more source
Computing Some Topological Indices of Two Kinds of Dendrimer Graphs G[n] and H[n]
Dendrimer molecules are macromolecules which have many applications in nanosciences, drug delivery, biology, and different areas of sciences. Topological indices of chemical graph theory are numerical descriptor of a molecular structure. The dendrimer graph G[n] is obtained by attaching the new paths P9, joined each pendant vertex of G[n − 1] to ...
Hojat Kaviani +2 more
wiley +1 more source
The minimum matching energy of unicyclic graphs with fixed number of vertices of degree two
The number of jj-matchings in a graph HH is denote by m(H,j)m\left(H,j). If for two graphs H1{H}_{1} and H2{H}_{2}, m(H1,j)≥m(H2,j)m\left({H}_{1},j)\ge m\left({H}_{2},j) for all jj, then we write H1≽H2{H}_{1}\succcurlyeq {H}_{2}.
Bai Yongqiang, Ma Hongping, Zhang Xia
doaj +1 more source
Brouwer's conjecture for the sum of the k largest Laplacian eigenvalues of some graphs
Let GG be a graph with n(G)n\left(G) vertices and e(G)e\left(G) edges, and Sk(G){S}_{k}\left(G) be the sum of the kk largest Laplacian eigenvalues of GG. Brouwer conjectured that Sk(G)≤e(G)+k+12{S}_{k}\left(G)\le e\left(G)+\left(\phantom{\rule[-0.75em]{}{
Wang Ke +3 more
doaj +1 more source
On the Harary Estrada index of graphs
Let GG be a connected graph with nn vertices v1,…,vn{v}_{1},\ldots ,{v}_{n}. The Harary matrix of GG, denoted by H(G)H\left(G), is an n×nn\times n matrix with a zero main diagonal, where the (i,j)\left(i,j)-entry is 1d(vi,vj)\frac{1}{d\left({v}_{i},{v}_ ...
Oboudi Mohammad Reza
doaj +1 more source
The sufficient conditions for $k$-leaf-connected graphs in terms of several topological indices
Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. For $k\geq2$ and given any subset $S\subseteq|V(G)|$ with $|S|=k$, if a graph $G$ of order $|V(G)|\geq k+1$ always has a spanning tree $T$ such that $S$ is precisely the set of ...
Hu, Yang, Ma, Tingyan, Wang, Ligong
core
For a graph Q=(V,E){\mathbb{Q}}=\left({\mathbb{V}},{\mathbb{E}}), the transformation graph are defined as graphs with vertex set being V(Q)∪E(Q){\mathbb{V}}\left({\mathbb{Q}})\cup {\mathbb{E}}\left({\mathbb{Q}}) and edge set is described following ...
Ali Parvez +5 more
doaj +1 more source

