Results 1 to 10 of about 107 (89)
An Analogue of DP-Coloring for Variable Degeneracy and its Applications
A graph G is list vertex k-arborable if for every k-assignment L, one can choose f(v) ∈ L(v) for each vertex v so that vertices with the same color induce a forest. In [6], Borodin and Ivanova proved that every planar graph without 4-cycles adjacent to 3-
Sittitrai Pongpat, Nakprasit Kittikorn
doaj +1 more source
On (p, 1)-Total Labelling of Some 1-Planar Graphs
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that the (p, 1)-total labelling number (p ≥ 2) of every 1-planar graph G is at most Δ(G) + 2p − 2 provided that Δ (G) ≥
Niu Bei, Zhang Xin
doaj +1 more source
Finite groups whose intersection power graphs are toroidal and projective-planar
The intersection power graph of a finite group GG is the graph whose vertex set is GG, and two distinct vertices xx and yy are adjacent if either one of xx and yy is the identity element of GG, or ⟨x⟩∩⟨y⟩\langle x\rangle \cap \langle y\rangle is non ...
Li Huani, Ma Xuanlong, Fu Ruiqin
doaj +1 more source
Cyclic Permutations in Determining Crossing Numbers
The crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. Recently, the crossing numbers of join products of two graphs have been studied.
Klešč Marián, Staš Michal
doaj +1 more source
Colorings of Plane Graphs Without Long Monochromatic Facial Paths
Let G be a plane graph. A facial path of G is a subpath of the boundary walk of a face of G. We prove that each plane graph admits a 3-coloring (a 2-coloring) such that every monochromatic facial path has at most 3 vertices (at most 4 vertices).
Czap Július +2 more
doaj +1 more source
The Crossing Number of Hexagonal Graph H3,n in the Projective Plane
Thomassen described all (except finitely many) regular tilings of the torus S1 and the Klein bottle N2 into (3,6)-tilings, (4,4)-tilings and (6,3)-tilings.
Wang Jing +3 more
doaj +1 more source
Longer Cycles in Essentially 4-Connected Planar Graphs
A planar 3-connected graph G is called essentially 4-connected if, for every 3-separator S, at least one of the two components of G − S is an isolated vertex.
Fabrici Igor +3 more
doaj +1 more source
An O(mn2) Algorithm for Computing the Strong Geodetic Number in Outerplanar Graphs
Let G = (V (G), E(G)) be a graph and S be a subset of vertices of G. Let us denote by γ[u, v] a geodesic between u and v. Let Γ(S) = {γ[vi, vj] | vi, vj ∈ S} be a set of exactly |S|(|S|−1)/2 geodesics, one for each pair of distinct vertices in S.
Mezzini Mauro
doaj +1 more source
Flippable Edges in Triangulations on Surfaces
Concerning diagonal flips on triangulations, Gao et al. showed that any triangulation G on the sphere with n ≥ 5 vertices has at least n − 2 flippable edges.
Ikegami Daiki, Nakamoto Atsuhiro
doaj +1 more source
Additive List Coloring of Planar Graphs with Given Girth
An additive coloring of a graph G is a labeling of the vertices of G from {1, 2, . . . , k} such that two adjacent vertices have distinct sums of labels on their neighbors.
Brandt Axel +2 more
doaj +1 more source

