Results 21 to 30 of about 1,105 (94)
A Note on the Interval Function of a Disconnected Graph
In this note we extend the Mulder-Nebeský characterization of the interval function of a connected graph to the disconnected case. One axiom needs to be adapted, but also a new axiom is needed in addition.
Changat Manoj +3 more
doaj +1 more source
The Proper Diameter of a Graph
A proper edge-coloring of a graph is a coloring in which adjacent edges receive distinct colors. A path is properly colored if consecutive edges have distinct colors, and an edge-colored graph is properly connected if there exists a properly colored path
Coll Vincent +4 more
doaj +1 more source
The normalized distance Laplacian
The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of ...
Reinhart Carolyn
doaj +1 more source
Weak Total Resolvability In Graphs
A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of a graph G if the distance from v to x is di erent from the distance from v to y.
Casel Katrin +3 more
doaj +1 more source
Comparing Eccentricity-Based Graph Invariants
The first and second Zagreb eccentricity indices (EM1 and EM2), the eccentric distance sum (EDS), and the connective eccentricity index (CEI) are all recently conceived eccentricity-based graph invariants, some of which found applications in chemistry ...
Hua Hongbo, Wang Hongzhuan, Gutman Ivan
doaj +1 more source
On kernels by rainbow paths in arc-coloured digraphs
In 2018, Bai, Fujita and Zhang [Discrete Math. 341 (2018), no. 6, 1523–1533] introduced the concept of a kernel by rainbow paths (for short, RP-kernel) of an arc-coloured digraph DD, which is a subset SS of vertices of DD such that (aa) there exists no ...
Li Ruijuan, Cao Yanqin, Zhang Xinhong
doaj +1 more source
The (1, 2)-step competition graph of a hypertournament
In 2011, Factor and Merz [Discrete Appl. Math. 159 (2011), 100–103] defined the (1,2)\left(1,2)-step competition graph of a digraph. Given a digraph D=(V,A)D=\left(V,A), the (1,2)\left(1,2)-step competition graph of D, denoted C1,2(D){C}_{1,2}\left(D ...
Li Ruijuan, An Xiaoting, Zhang Xinhong
doaj +1 more source
Proximity, remoteness and maximum degree in graphs [PDF]
The average distance of a vertex $v$ of a connected graph $G$ is the arithmetic mean of the distances from $v$ to all other vertices of $G$. The proximity $\pi(G)$ and the remoteness $\rho(G)$ of $G$ are the minimum and the maximum of the average ...
Peter Dankelmann +2 more
doaj +1 more source
Inverse Problem on the Steiner Wiener Index
The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) =∑u,v∈V (G)dG(u, v), where dG(u, v) is the distance (the length a shortest path) between the vertices u and v in G. For S ⊆ V (G), the Steiner distance d(S) of
Li Xueliang, Mao Yaping, Gutman Ivan
doaj +1 more source
The mixed metric dimension of flower snarks and wheels
New graph invariant, which is called a mixed metric dimension, has been recently introduced. In this paper, exact results of the mixed metric dimension on two special classes of graphs are found: flower snarks Jn{J}_{n} and wheels Wn{W}_{n}. It is proved
Danas Milica Milivojević
doaj +1 more source

