Results 31 to 40 of about 1,202 (110)
Algorithms for minimum flows [PDF]
We present a generic preflow algorithm and several implementations of it, that solve the minimum flow problem in O(n2m) time.
Eleonor Ciurea, Laura Ciupal
doaj
A note on the k‐domination number of a graph
The k‐domination number of a graph G = G(V, E), γk(G), is the least cardinality of a set X ⊂ V such that any vertex in VX is adjacent to at least k vertices of X. Extending a result of Cockayne, Gamble and Shepherd [4], we prove that if , n ≥ 1, k ≥ 1 then, , where p is the order of G.
Y. Caro, Y. Roditty
wiley +1 more source
COMPUTING SANSKRUTI INDEX OF V-PHENYLENIC NANOTUBES AND NANOTORI
Among topological descriptors connectivity topological indices are very important and they have a prominent role in chemistry. One of them is Sanskruti index defined as S(G) = ∑ uv∈E(G)( SuSv Su+Sv−2 ) where Su is the summation of degrees of all ...
Huiyan Jiang +4 more
semanticscholar +1 more source
On the discrepancy of coloring finite sets
Given a subset S of {1, …, n} and a map X : {1, …, n} → {−1, 1}, (i.e. a coloring of {1, …, n} with two colors, say red and blue) define the discrepancy of S with respect to X to be dX(S)=|∑i∈SX(i)| (the difference between the reds and blues on S).
D. Hajela
wiley +1 more source
A regular graph of girth 6 and valency 11
Let f(11, 6) be the number of vertices of an (11, 6)‐cage. By giving a regular graph of girth 6 and valency 11, we show that f(11, 6) ≤ 240. This is the best known upper bound for f(11, 6).
P. K. Wong
wiley +1 more source
A note on the problem of finding a (3, 9)‐cage
In this paper, we discuss The poblem of finding a (3, 9)‐cage. A hamiltonian graph with girth 9 and 54 vertices is given. Except four vertices, each of the remaining vertices of this graph has valency Three. This graph is obtained with the aid of a computer.
P. K. Wong
wiley +1 more source
ON TOPOLOGICAL PROPERTIES OF PLANE GRAPHS BY USING LINE OPERATOR ON THEIR SUBDIVISIONS
In this paper, we will compute some topological indices such as Zagreb indices M1(G), M2(G), M3(G), Zagreb coindices M1(G), M1(G), M2(G), M2(G)), M2(G), hyper-Zagreb index HM(G), atom-bond connectivity index ABC(G), sum connectivity index χ(G ...
Mohamad Nazri Husin +4 more
semanticscholar +1 more source
A graph is subeulerian if it is spanned by an eulerian supergraph. Boesch, Suffel and Tindell have characterized the class of subeulerian graphs and determined the minimum number of additional lines required to make a subeulerian graph eulerian. In this paper, we consider the related notion of a subsemi‐eulerian graph, i.e.
Charles Suffel +3 more
wiley +1 more source
Hyper-Wiener indices of polyphenyl chains and polyphenyl spiders
Let G be a connected graph and u and v two vertices of G. The hyper-Wiener index of graph G is WW(G)=12∑u,v∈V(G)(dG(u,v)+dG2(u,v))$\begin{array}{} WW(G)=\frac{1}{2}\sum\limits_{u,v\in V(G)}(d_{G}(u,v)+d^{2}_{G}(u,v)) \end{array}$, where dG(u, v) is the ...
Wu Tingzeng, Lü Huazhong
doaj +1 more source
On the Metric Dimension of Directed and Undirected Circulant Graphs
The undirected circulant graph Cn(±1, ±2, . . . , ±t) consists of vertices v0, v1, . . . , vn−1 and undirected edges vivi+j, where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ t (2 ≤ t ≤ n2{n \over 2} ), and the directed circulant graph Cn(1, t) consists of vertices v0, v1, .
Vetrík Tomáš
doaj +1 more source

