Results 11 to 20 of about 1,105 (90)
The structure fault tolerance of burnt pancake networks
One of the symbolic parameters to measure the fault tolerance of a network is its connectivity. The HH-structure connectivity and HH-substructure connectivity extend the classical connectivity and are more practical.
Ge Huifen, Ye Chengfu, Zhang Shumin
doaj +1 more source
Further generalization of symmetric multiplicity theory to the geometric case over a field
Using the recent geometric Parter-Wiener, etc. theorem and related results, it is shown that much of the multiplicity theory developed for real symmetric matrices associated with paths and generalized stars remains valid for combinatorially symmetric ...
Cinzori Isaac +3 more
doaj +1 more source
Path homology theory of edge-colored graphs
In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau.
Muranov Yuri V., Szczepkowska Anna
doaj +1 more source
When products of projections diverge
Abstract Slow convergence of cyclic projections implies divergence of random projections and vice versa. Let L1,L2,⋯,LK be a family of K closed subspaces of a Hilbert space. It is well known that although the cyclic product of the orthogonal projections on these spaces always converges in norm, random products might diverge.
Eva Kopecká
wiley +1 more source
Decomposing tournaments into paths
Abstract We consider a generalisation of Kelly's conjecture which is due to Alspach, Mason, and Pullman from 1976. Kelly's conjecture states that every regular tournament has an edge decomposition into Hamilton cycles, and this was proved by Kühn and Osthus for large tournaments. The conjecture of Alspach, Mason, and Pullman asks for the minimum number
Allan Lo +3 more
wiley +1 more source
Star-Critical Ramsey Numbers for Cycles Versus K4
Given three graphs G, H and K we write K → (G, H), if in any red/blue coloring of the edges of K there exists a red copy of G or a blue copy of H. The Ramsey number r(G, H) is defined as the smallest natural number n such that Kn → (G, H) and the star ...
Jayawardene Chula J. +2 more
doaj +1 more source
Alternating-Pancyclism in 2-Edge-Colored Graphs
An alternating cycle in a 2-edge-colored graph is a cycle such that any two consecutive edges have different colors. Let G1, . . ., Gkbe a collection of pairwise vertex disjoint 2-edge-colored graphs. The colored generalized sum of G1, . . ., Gk, denoted
Cordero-Michel Narda +1 more
doaj +1 more source
Hermite-Hadamard-type inequalities for (g,φh)-convex dominated functions [PDF]
In this paper, we introduce the notion of (g,φh)-convex dominated function and present some properties of them. Finally, we present a version of Hermite-Hadamard-type inequalities for (g,φh)-convex dominated functions.
M. Özdemir +2 more
semanticscholar +1 more source
On the Independence Number of Traceable 2-Connected Claw-Free Graphs
A well-known theorem by Chvátal-Erdőos [A note on Hamilton circuits, Discrete Math. 2 (1972) 111–135] states that if the independence number of a graph G is at most its connectivity plus one, then G is traceable.
Wang Shipeng, Xiong Liming
doaj +1 more source
Forbidden Subgraphs for Collapsible Graphs and Supereulerian Graphs
In this paper, we completely characterize the connected forbidden subgraphs and pairs of connected forbidden subgraphs that force a 2-edge-connected (2-connected) graph to be collapsible.
Liu Xia, Xiong Liming
doaj +1 more source

