Results 41 to 50 of about 93 (56)
Some Results on Path-Factor Critical Avoidable Graphs
A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a P≥k-factor of G means a path factor in which every component admits at least k vertices, where k ≥ 2 is ...
Zhou Sizhong
doaj +1 more source
Distance-Local Rainbow Connection Number
Under an edge coloring (not necessarily proper), a rainbow path is a path whose edge colors are all distinct. The d-local rainbow connection number lrcd(G) (respectively, d-local strong rainbow connection number lsrcd(G)) is the smallest number of colors
Septyanto Fendy, Sugeng Kiki A.
doaj +1 more source
Cyclic Permutations in Determining Crossing Numbers
The crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. Recently, the crossing numbers of join products of two graphs have been studied.
Klešč Marián, Staš Michal
doaj +1 more source
On the Number of Disjoint 4-Cycles in Regular Tournaments
In this paper, we prove that for an integer r ≥ 1, every regular tournament T of degree 3r − 1 contains at least 2116r-103${{21} \over {16}}r - {{10} \over 3}$ disjoint directed 4-cycles. Our result is an improvement of Lichiardopol’s theorem when taking
Ma Fuhong, Yan Jin
doaj +1 more source
Forbidden Pairs and (k,m)-Pancyclicity
A graph G on n vertices is said to be (k, m)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each r ∈ {m, m+1, . . . , n}.
Crane Charles Brian
doaj +1 more source
Heavy Subgraphs, Stability and Hamiltonicity
Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G
Li Binlong, Ning Bo
doaj +1 more source
Some Results on the Independence Polynomial of Unicyclic Graphs
Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x)=∑k=0ns(G,k)xk$I(G,x) = \sum\nolimits_{k = 0}^n {s\left({G,k} \right)x^k }$, where s(
Oboudi Mohammad Reza
doaj +1 more source
The Crossing Number of Join of the Generalized Petersen Graph P(3, 1) with Path and Cycle
There are only few results concerning the crossing numbers of join of some graphs. In this paper, the crossing numbers of join products for the generalized Petersen graph P(3, 1) with n isolated vertices as well as with the path Pn on n vertices and with
Ouyang Zhang Dong+2 more
doaj +1 more source
Hamilton cycles in almost distance-hereditary graphs
Let G be a graph on n ≥ 3 vertices. A graph G is almost distance-hereditary if each connected induced subgraph H of G has the property dH(x, y) ≤ dG(x, y) + 1 for any pair of vertices x, y ∈ V(H).
Chen Bing, Ning Bo
doaj +1 more source
A new error estimate on uniform norm of Schwarz algorithm for elliptic quasi-variational inequalities with nonlinear source terms. [PDF]
Mehri A, Saadi S.
europepmc +1 more source