Results 11 to 20 of about 2,691 (126)
On real or integral skew Laplacian spectrum of digraphs
For a simple connected graph G with n vertices and m edges, let −→ G be a digraph obtained by giving an arbitrary direction to the edges of G . In this paper, we consider the skew Laplacian matrix of a digraph −→ G and we obtain the skew Laplacian ...
S. Pirzada+2 more
semanticscholar +1 more source
A trace bound for integer-diagonal positive semidefinite matrices
We prove that an n-by-n complex positive semidefinite matrix of rank r whose graph is connected, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one, has trace at least n + r − 1.
Mitchell Lon
doaj +1 more source
Characteristic polynomials of some weighted graph bundles and its application to links
In this paper, we introduce weighted graph bundles and study their characteristic polynomial. In particular, we show that the characteristic polynomial of a weighted ‐bundles over a weighted graph G? can be expressed as a product of characteristic polynomials two weighted graphs whose underlying graphs are G As an application, we compute the signature ...
Moo Young Sohn, Jaeun Lee
wiley +1 more source
A note on distance spectral radius of trees
The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We determine the unique non-starlike non-caterpillar tree with maximal distance spectral radius.
Wang Yanna+3 more
doaj +1 more source
Small clique number graphs with three trivial critical ideals
The critical ideals of a graph are the determinantal ideals of the generalized Laplacian matrix associated to a graph. Previously, they have been used in the understanding and characterizing of the graphs with critical group with few invariant factors ...
Alfaro Carlos A., Valencia Carlos E.
doaj +1 more source
On minimum algebraic connectivity of graphs whose complements are bicyclic
The second smallest eigenvalue of the Laplacian matrix of a graph (network) is called its algebraic connectivity which is used to diagnose Alzheimer’s disease, distinguish the group differences, measure the robustness, construct multiplex model ...
Liu Jia-Bao+3 more
doaj +1 more source
Graphs Whose Aα -Spectral Radius Does Not Exceed 2
Let A(G) and D(G) be the adjacency matrix and the degree matrix of a graph G, respectively. For any real α ∈ [0, 1], we consider Aα (G) = αD(G) + (1 − α)A(G) as a graph matrix, whose largest eigenvalue is called the Aα -spectral radius of G.
Wang Jian Feng+3 more
doaj +1 more source
On ordering of minimal energies in bicyclic signed graphs
Let S = (G, σ) be a signed graph of order n and size m and let x1, x2, ..., xn be the eigenvalues of S. The energy of S is defined as ɛ(S)=∑j=1n|xj|\varepsilon \left( S \right) = \sum\limits_{j = 1}^n {\left| {{x_j}} \right|}. A connected signed graph is
Pirzada S.+2 more
doaj +1 more source
Rank relations between a {0, 1}-matrix and its complement
Let A be a {0, 1}-matrix and r(A) denotes its rank. The complement matrix of A is defined and denoted by Ac = J − A, where J is the matrix with each entry being 1.
Ma Chao, Zhong Jin
doaj +1 more source
Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable
A graph G is k-Hamiltonian if for all X ⊂ V (G) with |X| ≤ k, the subgraph induced by V (G) \ X is Hamiltonian. A graph G is k-path-coverable if V (G) can be covered by k or fewer vertex disjoint paths.
Liu Weijun+3 more
doaj +1 more source