Results 21 to 30 of about 1,270 (74)
Total Roman domination on the digraphs
Let D=(V,A)D=\left(V,A) be a simple digraph with vertex set VV, arc set AA, and no isolated vertex. A total Roman dominating function (TRDF) of DD is a function h:V→{0,1,2}h:V\to \left\{0,1,2\right\}, which satisfies that each vertex x∈Vx\in V with h(x ...
Zhang Xinhong, Song Xin, Li Ruijuan
doaj +1 more source
Bounding the Open k-Monopoly Number of Strong Product Graphs
Let G = (V, E) be a simple graph without isolated vertices and minimum degree δ, and let k ∈ {1 − ⌈δ/2⌉, . . . , ⌊δ/2⌋} be an integer. Given a set M ⊂ V, a vertex v of G is said to be k-controlled by M if δM(v)≥δG(v)2+k$\delta _M (v) \ge {{\delta _G (v)}
Kuziak Dorota +2 more
doaj +1 more source
If S = (a1, a2, . . .) is a non-decreasing sequence of positive integers, then an S-packing coloring of a graph G is a partition of V (G) into sets X1, X2, . . .
Brešar Boštjan +3 more
doaj +1 more source
Some Progress on the Double Roman Domination in Graphs
For a graph G = (V,E), a double Roman dominating function (or just DRDF) is a function f : V → {0, 1, 2, 3} having the property that if f(v) = 0 for a vertex v, then v has at least two neighbors assigned 2 under f or one neighbor assigned 3 under f, and ...
Rad Nader Jafari, Rahbani Hadi
doaj +1 more source
On the general position number of two classes of graphs
The general position problem is to find the cardinality of the largest vertex subset SS such that no triple of vertices of SS lies on a common geodesic.
Yao Yan, He Mengya, Ji Shengjin
doaj +1 more source
Double domination in maximal outerplanar graphs
In graph GG, a vertex dominates itself and its neighbors. A subset S⊆V(G)S\subseteq V\left(G) is said to be a double-dominating set of GG if SS dominates every vertex of GG at least twice.
Zhuang Wei, Zheng Qiuju
doaj +1 more source
On Incidence Coloring of Complete Multipartite and Semicubic Bipartite Graphs
In the paper, we show that the incidence chromatic number χi of a complete k-partite graph is at most Δ + 2 (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to Δ + 1 if and only if the smallest part has only one vertex ...
Janczewski Robert +2 more
doaj +1 more source
On Grundy Total Domination Number in Product Graphs
A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset .
Brešar Boštjan +8 more
doaj +1 more source
Some Results on the Independence Polynomial of Unicyclic Graphs
Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x)=∑k=0ns(G,k)xk$I(G,x) = \sum\nolimits_{k = 0}^n {s\left({G,k} \right)x^k }$, where s(
Oboudi Mohammad Reza
doaj +1 more source
Open Locating-Dominating Sets in Circulant Graphs
Location detection problems have been studied for a variety of applications including finding faults in multiprocessors, contaminants in public utilities, intruders in buildings and facilities, and for environmental monitoring using wireless sensor ...
Givens Robin M. +2 more
doaj +1 more source

