Results 41 to 50 of about 192,888 (294)

Tuza's Conjecture for Threshold Graphs [PDF]

open access: yesDiscrete Mathematics & Theoretical Computer Science, 2022
Tuza famously conjectured in 1981 that in a graph without k+1 edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph. The conjecture holds for graphs with small treewidth or small maximum average degree, including
Marthe Bonamy   +6 more
doaj   +1 more source

Dynamic list coloring of 1-planar graphs [PDF]

open access: yesDiscrete Mathematics, 2021
A graph is $k$-planar if it can be drawn in the plane so that each edge is crossed at most $k$ times. Typically, the class of 1-planar graphs is among the most investigated graph families within the so-called "beyond planar graphs". A dynamic $\ell$-list coloring of a graph is a proper coloring so that each vertex receives a color from a list of $\ell$
Xin Zhang, Yan Li
openaire   +3 more sources

Strongly Multiplicative Labeling of Diamond Graph, Generalized Petersen Graph, and Some Other Graphs

open access: yesJournal of Mathematics, 2022
A finite, simple graph of order k is said to be a strongly multiplicative graph when all vertices of the graph are labeled by positive integers 1,2,3,…,k such that the induced edge labels of the graph, obtained by the product of labels of end vertices of
Sumiya Nasir   +5 more
doaj   +1 more source

Hosoya Polynomial, Wiener Index, Coloring and Planar of Annihilator Graph of Zn [PDF]

open access: yesAl-Rafidain Journal of Computer Sciences and Mathematics, 2020
Let R be a commutative ring with identity. We consider ΓB(R) an annihilator graph of the commutative ring R. In this paper, we find Hosoya polynomial, Wiener index, Coloring, and Planar annihilator graph of Zn denote ΓB(Zn) , with n= pm or n=pmq, where p,
Mohammed Ahmed   +2 more
doaj   +1 more source

On the probability of planarity of a random graph near the critical point [PDF]

open access: yes, 2012
Consider the uniform random graph $G(n,M)$ with $n$ vertices and $M$ edges. Erd\H{o}s and R\'enyi (1960) conjectured that the limit $$ \lim_{n \to \infty} \Pr\{G(n,\textstyle{n\over 2}) is planar}} $$ exists and is a constant strictly between 0 and 1. \
Noy, Marc   +2 more
core   +4 more sources

A Sufficient Condition for Planar Graphs of Maximum Degree 6 to be Totally 7-Colorable

open access: yesDiscrete Dynamics in Nature and Society, 2020
A total k-coloring of a graph is an assignment of k colors to its vertices and edges such that no two adjacent or incident elements receive the same color.
Enqiang Zhu, Yongsheng Rao
doaj   +1 more source

On edge colorings of 1-planar graphs [PDF]

open access: yesInformation Processing Letters, 2011
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that every 1-planar graph with maximum degree Δ?10 can be edge-colored with Δ colors. Research highlights? In the study we investigate the edge coloring of 1-planar graphs. ?
Jianliang Wu, Xin Zhang
openaire   +2 more sources

On Edge Colorings of 1-Planar Graphs without 5-Cycles with Two Chords

open access: yesDiscussiones Mathematicae Graph Theory, 2019
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that every 1-planar graph with maximum degree ∆ ≥ 8 is edge-colorable with ∆ colors if each of its 5-cycles contains ...
Sun Lin, Wu Jianliang
doaj   +1 more source

Planar graphs with $\Delta \geq 7$ and no triangle adjacent to a $C_4$ are minimally edge and total choosable [PDF]

open access: yesDiscrete Mathematics & Theoretical Computer Science, 2016
For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors.
Marthe Bonamy   +2 more
doaj   +1 more source

Contact Representations of Graphs in 3D

open access: yes, 2015
We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there
A Bezdek   +17 more
core   +1 more source

Home - About - Disclaimer - Privacy