MEMS‐Based Magnetoelectric Antennas for Wireless Power Transmission in Brain‐Implantable Devices
Magnetoelectric (ME) antennas allow the minimization of the invasiveness of brain implantable devices, via powering wirelessly systems able to actuate neural tissue. In order to achieve the necessary power efficiency transmission, the choice of the materials and the system assembly is vital.
Laura Mazón‐Maldonado +5 more
wiley +1 more source
Microwave‐Assisted Aqueous Synthesis of Gelatin‐Norbornene for Hydrogel Crosslinking and Bioprinting
A microwave‐assisted reaction is utilized to synthesize gelatin‐norbornene (GelNB), achieving a high degree of norbornene functionalization while reducing the macromer's upper critical solution temperature. The resulting GelNB macromer has high solubility at room temperature, facilitating light‐based 3‐dimensional (3D) printing of thiol‐norbornene ...
Jonathan B. Bryan, Chien‐Chi Lin
wiley +1 more source
Photothermomechanically Efficient, Low‐Cost, High‐Cycle‐Life, Hybrid MXene‐Polymer Actuators
The addition of MXenes to elastomer‐plastic‐paper films enables the creation of easily prepared actuators that are scalable for small robotic applications. Known as MXene‐polymer Trilayer Actuators (MPTAs), they bend from UV light. Their usefulness is demonstrated through kirigami‐inspired flower‐shaped art design, parallel manipulator for waveguiding,
Ken Iiyoshi +6 more
wiley +1 more source
Printed 2.5D‐Microstructures with Material‐Specific Functionalization for Tunable Biosensing
The 2.5D‐MiSENSE platform integrates a microstructured biosensor with an in‐line milking pipeline to enable real‐time detection of mastitis biomarkers during active milk flow. The system uses a 2.5D microengineered surface and patterned electrodes to enhance milk–sensor interaction.
Matin Ataei Kachouei +2 more
wiley +1 more source
Hydrogel‐Based Functional Materials: Classifications, Properties, and Applications
Conductive hydrogels have emerged as promising materials for smart wearable devices due to their outstanding flexibility, multifunctionality, and biocompatibility. This review systematically summarizes recent progress in their design strategies, focusing on monomer systems and conductive components, and highlights key multifunctional properties such as
Zeyu Zhang, Zao Cheng, Patrizio Raffa
wiley +1 more source
Adhesive Double‐Network Granular Organogel E‐Skin
We introduce a double‐network granular organogel adhesive for electronic skin, overcoming adhesion and strength trade‐offs. It provides reversible, robust bonding and ionic conductivity, enabling wearable and soft robotic e‐skin. Thanks to the e‐skin adhesive, a soft robotic trunk can recognize touch, temperature, humidity, and acidity.
Antonia Georgopoulou +4 more
wiley +1 more source
Modeling the blood–brain tumor barrier is challenging due to complex interactions between brain microvasculature and glioma cells. We present two‐photon polymerized 3D micro‐porous capillary‐like structures that support endothelial alignment, cytoskeletal organization, and pericyte‐endothelial‐glioma tri‐cultures.
Nastaran Barin +9 more
wiley +1 more source
Ultra‐Durable Information‐Encoded Anti‐Counterfeiting Self‐Assembled Nanocrystal Labels
Ultra‐durable cost‐effective information‐encoded anti‐counterfeiting labels are fabricated to secure semiconductor chips. A novel method is used to self‐assemble colloidal quantum wells (CQWs) into color bars. Information can be encoded spatially, spectrally, and opto‐spatially.
Taha Haddadifam +6 more
wiley +1 more source
Incorporating lanthanide‐based fluorophores into commercial resists for femtosecond direct laser writing enables a novel platform for multiplexed sensing. Porous, periodic, and solid luminescent microstructures fabricated directly on optical fiber tips are presented.
Valese Aslani +8 more
wiley +1 more source
Dense extreme inception network-based edge detection with deep reinforcement learning for object localization in an underwater environment. [PDF]
Praveena S +6 more
europepmc +1 more source

