Results 121 to 130 of about 344,101 (298)

Mussel‐Inspired Molecular Strategies for Fabricating Functional Materials With Underwater Adhesion and Self‐Healing Properties

open access: yesAdvanced Materials, EarlyView.
This review systematically examines the nanomechanical mechanisms of mussel‐inspired molecular interactions, primarily investigated by direct force measurement techniques such as surface forces apparatus and atomic force microscopy. The macroscopic adhesive and self‐healing performances of mussel‐inspired functional materials, including coacervates ...
Pan Huang, Hongjian Zhang, Hongbo Zeng
wiley   +1 more source

Harnessing Photo‐Energy Conversion in Nanomaterials for Precision Theranostics

open access: yesAdvanced Materials, EarlyView.
Harnessing photo‐energy conversion in nanomaterials enables precision theranostics through light‐driven mechanisms such as photoluminescence, photothermal, photoelectric, photoacoustic, photo‐triggered surface‐enhanced Raman scattering (SERS), and photodynamic processes. This review explores six fundamental principles of photo‐energy conversion, recent
Jingyu Shi   +4 more
wiley   +1 more source

Engineered Plasmonic and Fluorescent Nanomaterials for Biosensing, Motion, Imaging, and Therapeutic Applications

open access: yesAdvanced Materials, EarlyView.
A schematic illustration of how noble metals can be used to create nanoparticles (NPs) or nanoclusters (NCs). Noble metal NPs, due to their plasmonic properties, enable photothermal therapy and surface‐enhanced Raman scattering (SERS). In contrast, NCs, which lack a plasmonic resonance band, exhibit fluorescence, making them ideal for bioimaging ...
David Esporrín‐Ubieto   +3 more
wiley   +1 more source

Contents to volume 330 [PDF]

open access: yesFEBS Letters, 1993
openaire   +1 more source

Interface Topology Driven Loss Minimization in Integrated Photonics: THz Ultrahigh‐Q Cavities and Waveguides

open access: yesAdvanced Materials, EarlyView.
Compact, robust, and ultralow‐loss on‐chip photonic devices are essential for densely integrated photonic chips. Here, the underlying radiation mechanism in topological valley edge states is unveiled and a new methodology of interface topology driven bandgap and wavevector engineering is proposed to thoroughly suppress their radiation losses, thereby ...
Zhonglei Shen   +6 more
wiley   +1 more source

Spin Engineering of Dual‐Atom Site Catalysts for Efficient Electrochemical Energy Conversion

open access: yesAdvanced Materials, EarlyView.
This review highlights recent progress in spin engineering of dual‐atom site catalysts (DASCs), emphasizing how spin‐related properties enhance electrocatalytic activity, selectivity, and stability. It summarizes cutting‐edge developments in dual‐atom catalysis, discusses the underlying spin‐catalysis mechanisms and structure–performance relationships,
Dongping Xue   +5 more
wiley   +1 more source

Stiffening Liquid Crystal Elastomers with Liquid Crystal Inclusions

open access: yesAdvanced Materials, EarlyView.
Incorporation of low molecular weight liquid crystals (LC) into liquid crystal elastomers (LCE) leads to a significant increase in their stiffness and output work density. Such remarkable stiffening is attributed to nanoscale phase‐separation and the formation of induced‐smectic domains in polydomain and monodomain LC‐LCEs, respectively.
Sahad Vasanji   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy