Results 41 to 50 of about 976 (113)
Diffraction problems for quasilinear parabolic systems with boundary intersecting interfaces
In this paper, we discuss the n-dimensional diffraction problem for weakly coupled quasilinear parabolic system on a bounded domain Ω, where the interfaces Γk (k=1,…,K−1) are allowed to intersect with the outer boundary ∂ Ω and the coefficients of the ...
Qi-Jian Tan, C. Pan
semanticscholar +2 more sources
An anisotropic quasilinear problem with perturbations
This work focuses on proving the existence and uniqueness of strong solutions of perturbed anisotropic total variation flow with the Neumann boundary condition when the initial data is an L2(Ω) function.MSC:35K65, 35K55.
J. Rui, Jianguo Si
semanticscholar +2 more sources
We consider the homogeneous Dirichlet problem for the parabolic equation ut−div(∣∇u∣p(x,t)−2∇u)=f(x,t)+F(x,t,u,∇u){u}_{t}-{\rm{div}}({| \nabla u| }^{p\left(x,t)-2}\nabla u)=f\left(x,t)+F\left(x,t,u,\nabla u) in the cylinder QT≔Ω×(0,T){Q}_{T}:= \Omega ...
Arora Rakesh, Shmarev Sergey
doaj +1 more source
On a fractional thin film equation
This paper deals with a nonlinear degenerate parabolic equation of order α between 2 and 4 which is a kind of fractional version of the Thin Film Equation.
Segatti Antonio, Vázquez Juan Luis
doaj +1 more source
In this article, we study the inviscid limit of the solution to the Cauchy problem of a one-dimensional viscous conservation law, where the second-order term is nonlinear. Under the assumption that the inviscid equation admits a piecewise smooth solution
Feng Li, Wang Jing
doaj +1 more source
Non-Newtonian polytropic filtration systems with nonlinear boundary conditions
This article deals with the global existence and the blow-up of non-Newtonian polytropic filtration systems with nonlinear boundary conditions. Necessary and sufficient conditions on the global existence of all positive (weak) solutions are obtained by ...
Du Wanjuan, Li Zhongping
doaj
Finite element method for nonlocal problems of Kirchhoff-type in domains with moving boundary
This paper is devoted to the analysis of the finite element method for the mixed problem for the Kirchhoff nonlinear model given by the hyperbolic-parabolic equations in a bounded noncylindrical domain with moving boundaries.
M. Mbehou+2 more
doaj
We consider the high-dimensional equation ∂tu-Δum+u-βχ{u>0}=0{\partial_{t}u-\Delta u^{m}+u^{-\beta}{\chi_{\{u>0\}}}=0}, extending the mathematical treatment made in 1992 by B. Kawohl and R. Kersner for the one-dimensional case.
Dao Nguyen Anh+2 more
doaj +1 more source
Hölder gradient estimates for a class of singular or degenerate parabolic equations
We prove interior Hölder estimates for the spatial gradients of the viscosity solutions to the singular or degenerate parabolic ...
Imbert Cyril+2 more
doaj +1 more source
On the Two-phase Fractional Stefan Problem
The classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion.
del Teso Félix+2 more
doaj +1 more source