Results 41 to 50 of about 1,088 (84)
We consider the homogeneous Dirichlet problem for the parabolic equation ut−div(∣∇u∣p(x,t)−2∇u)=f(x,t)+F(x,t,u,∇u){u}_{t}-{\rm{div}}({| \nabla u| }^{p\left(x,t)-2}\nabla u)=f\left(x,t)+F\left(x,t,u,\nabla u) in the cylinder QT≔Ω×(0,T){Q}_{T}:= \Omega ...
Arora Rakesh, Shmarev Sergey
doaj +1 more source
On a fractional thin film equation
This paper deals with a nonlinear degenerate parabolic equation of order α between 2 and 4 which is a kind of fractional version of the Thin Film Equation.
Segatti Antonio, Vázquez Juan Luis
doaj +1 more source
Wiener-Landis criterion for Kolmogorov-type operators
We establish a necessary and sufficient condition for a boundary point to be regular for the Dirichlet problem related to a class of Kolmogorov-type equations. Our criterion is inspired by two classical criteria for the heat equation: the Evans-Gariepy's
Kogoj, A. E., Lanconelli, E., Tralli, G.
core +1 more source
In this article, we study the inviscid limit of the solution to the Cauchy problem of a one-dimensional viscous conservation law, where the second-order term is nonlinear. Under the assumption that the inviscid equation admits a piecewise smooth solution
Feng Li, Wang Jing
doaj +1 more source
An introduction to “Second Order Subelliptic PDEs”: the scientific work of Ermanno Lanconelli
We present an overview of the scientific activity of Ermanno Lanconelli, to whom this volume is dedicated on the occasion of his birthday.
Bonfiglioli Andrea +10 more
doaj +1 more source
We consider the high-dimensional equation ∂tu-Δum+u-βχ{u>0}=0{\partial_{t}u-\Delta u^{m}+u^{-\beta}{\chi_{\{u>0\}}}=0}, extending the mathematical treatment made in 1992 by B. Kawohl and R. Kersner for the one-dimensional case.
Dao Nguyen Anh +2 more
doaj +1 more source
Hölder gradient estimates for a class of singular or degenerate parabolic equations
We prove interior Hölder estimates for the spatial gradients of the viscosity solutions to the singular or degenerate parabolic ...
Imbert Cyril +2 more
doaj +1 more source
On the Two-phase Fractional Stefan Problem
The classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion.
del Teso Félix +2 more
doaj +1 more source
The higher integrability of weak solutions of porous medium systems
In this paper we establish that the gradient of weak solutions to porous medium-type systems admits the self-improving property of higher integrability.
Bögelein Verena +3 more
doaj +1 more source
A constructive method for convex solutions of a class of nonlinear Black-Scholes equations
In this work, we are concerned with the theoretical study of a nonlinear Black-Scholes equation resulting from market frictions. We will focus our attention on Barles and Soner’s model where the volatility is enlarged due to the presence of transaction ...
Abounouh Mostafa +3 more
doaj +1 more source

