Results 61 to 70 of about 1,480 (78)

On a fractional thin film equation

open access: yesAdvances in Nonlinear Analysis, 2020
This paper deals with a nonlinear degenerate parabolic equation of order α between 2 and 4 which is a kind of fractional version of the Thin Film Equation.
Segatti Antonio, Vázquez Juan Luis
doaj   +1 more source

The properties of a new fractional g-Laplacian Monge-Ampère operator and its applications

open access: yesAdvances in Nonlinear Analysis
In this article, we first introduce a new fractional gg-Laplacian Monge-Ampère operator: Fgsv(x)≔infP.V.∫Rngv(z)−v(x)∣C−1(z−x)∣sdz∣C−1(z−x)∣n+s∣C∈C,{F}_{g}^{s}v\left(x):= \inf \left\{\hspace{0.1em}\text{P.V.}\hspace{0.1em}\mathop{\int }\limits_{{{\mathbb{
Wang Guotao, Yang Rui, Zhang Lihong
doaj   +1 more source

Critical fractional Schrödinger-Poisson systems with lower perturbations: the existence and concentration behavior of ground state solutions

open access: yesAdvances in Nonlinear Analysis
In this article, we study the following fractional Schrödinger-Poisson system: ε2s(−Δ)su+V(x)u+ϕu=f(u)+∣u∣2s*−2u,inR3,ε2t(−Δ)tϕ=u2,inR3,\left\{\begin{array}{ll}{\varepsilon }^{2s}{\left(-\Delta )}^{s}u+V\left(x)u+\phi u=f\left(u)+{| u| }^{{2}_{s}^{* }-2 ...
Feng Shenghao   +2 more
doaj   +1 more source

Nonlinear elliptic equations with self-adjoint integro-differential operators and measure data under sign condition on the nonlinearity

open access: yesAdvanced Nonlinear Studies
We study the existence problem for semilinear equations (E): −Au = f(⋅, u) + μ, with Borel measure μ and operator A that generates a symmetric Markov semigroup.
Klimsiak Tomasz
doaj   +1 more source

Petrov-Galerkin method for small deflections in fourth-order beam equations in civil engineering

open access: yesNonlinear Engineering
This study explores the Petrov–Galerkin method’s application in solving a linear fourth-order ordinary beam equation of the form u″″+qu=fu^{\prime\prime} ^{\prime\prime} +qu=f.
Youssri Youssri Hassan   +3 more
doaj   +1 more source

Penalty method for unilateral contact problem with Coulomb's friction in time-fractional derivatives

open access: yesDemonstratio Mathematica
The purpose of this work is to study a mathematical model that describes a contact between a deformable body and a rigid foundation. A linear viscoelastic Kelvin-Voigt constitutive law with time-fractional derivatives describes the material’s behavior ...
Essafi Lakbir, Bouallala Mustapha
doaj   +1 more source

Nonlocal perturbations of the fractional Choquard equation

open access: yesAdvances in Nonlinear Analysis, 2017
We study the ...
Singh Gurpreet
doaj   +1 more source

Multiple concentrating solutions for a fractional (p, q)-Choquard equation

open access: yesAdvanced Nonlinear Studies
We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon ...
Ambrosio Vincenzo
doaj   +1 more source

Monotonicity of solutions for parabolic equations involving nonlocal Monge-Ampère operator

open access: yesAdvances in Nonlinear Analysis
In this article, we consider the parabolic equations with nonlocal Monge-Ampère operators ∂u∂t(x,t)−Dsθu(x,t)=f(u(x,t)),(x,t)∈R+n×R.\frac{\partial u}{\partial t}\left(x,t)-{D}_{s}^{\theta }u\left(x,t)=f\left(u\left(x,t)),\hspace{1.0em}\left(x,t)\in ...
Du Guangwei, Wang Xinjing
doaj   +1 more source

Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent

open access: yesAdvances in Nonlinear Analysis, 2019
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent.
Xiang Mingqi   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy