Results 61 to 70 of about 1,557 (138)
In this paper, a linear implicit L1-Legendre Galerkin Chebyshev collocation method for the generalized timeand space-fractional Burgers equation is developed.
Y. Ma
semanticscholar +1 more source
In this paper we deal with the following fractional Kirchhoff equation \begin{equation*} \left(p+q(1-s) \iint_{\mathbb{R}^{2N}} \frac{|u(x)- u(y)|^{2}}{|x-y|^{N+2s}} \, dx\,dy \right)(-\Delta)^{s}u = g(u) \mbox{ in } \mathbb{R}^{N}, \end{equation*} where
Ambrosio, Vincenzo, Isernia, Teresa
core +1 more source
In this paper, we study the following fractional Schrödinger–Poisson system with discontinuous nonlinearity:ε2s(−Δ)su+V(x)u+ϕu=H(u−β)f(u),inR3,ε2s(−Δ)sϕ=u2,inR3,u>0,inR3, $$\begin{cases}^{2s}{\left(-{\Delta}\right)}^{s}u+V\left(x\right)u+\phi u=H\left(u-\
Mu Changyang, Yang Zhipeng, Zhang Wei
doaj +1 more source
A posteriori error estimates based on superconvergence of FEM for fractional evolution equations
In this paper, we consider an approximation scheme for fractional evolution equation with variable coefficient. The space derivative is approximated by triangular finite element and the time fractional derivative is evaluated by the L1 approximation. The
Tang Yuelong, Hua Yuchun
doaj +1 more source
Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions [PDF]
MSC 2010: 35R11, 42A38, 26A33, 33E12The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space ...
Al-Saqabi, Bader, Boyadjiev, Lyubomir
core
Weyl-type laws for fractional p-eigenvalue problems
We prove an asymptotic estimate for the growth of variational eigenvalues of fractional p-Laplacian eigenvalue problems on a smooth bounded domain.Comment: 10 ...
Iannizzotto, Antonio, Squassina, Marco
core +1 more source
Existence of Ground States of Fractional Schrödinger Equations
We consider ground states of the nonlinear fractional Schrödinger equation with ...
Ma Li, Li Zhenxiong
doaj +1 more source
General Fractional Calculus, Evolution Equations, and Renewal Processes
We develop a kind of fractional calculus and theory of relaxation and diffusion equations associated with operators in the time variable, of the form $(Du)(t)=\frac{d}{dt}\int\limits_0^tk(t-\tau)u(\tau)\,d\tau -k(t)u(0)$ where $k$ is a nonnegative ...
Kochubei, Anatoly N.
core +1 more source
In this article, we mainly study the qualitative properties of solutions for dual fractional-order parabolic equations with nonlocal Monge-Ampère operators in different domains ∂tβμ(y,t)−Dατμ(y,t)=f(μ(y,t)).{\partial }_{t}^{\beta }\mu \left(y,t)-{D}_ ...
Yang Zerong, He Yong
doaj +1 more source
Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities
In this article, we aimed to study a class of nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities as well as critical Hardy nonlinearities in RN{{\mathbb{R}}}^{N}.
Tao Mengfei, Zhang Binlin
doaj +1 more source

