Results 31 to 40 of about 349 (66)
Stability Results for Some Functional Equations on 2‐Banach Spaces With Restricted Domains
We have a normed abelian group G,.∗,+ and a 2‐pre‐Hilbert space Y with linearly independent elements u and v. Our goal is to prove that any odd map f:G⟶Y satisfying the inequality ‖f(x) + f(y), z‖ ⩽ ‖f(x + y), z‖, z ∈ {u, v}, for all x,y∈G with ‖x‖∗ + ‖y‖∗ ≥ d and some d ≥ 0, is additive. Then, we examined the stability issue correlated with Cauchy and
M. R. Abdollahpour +3 more
wiley +1 more source
On Almost Everywhere K-Additive Set-Valued Maps
Let X be an Abelian group, Y be a commutative monoid, K ⊂Y be a submonoid and F : X → 2Y \ {∅} be a set-valued map. Under some additional assumptions on ideals ℐ1 in X and ℐ2 in X2, we prove that if F is ℐ2-almost everywhere K-additive, then there ...
Jabłońska Eliza
doaj +1 more source
Exact eigenvalue assignment of linear scalar systems with single delay using Lambert W function
Eigenvalue assignment problem of a linear scalar system with a single discrete delay is analytically and exactly solved. The existence condition of the desired eigenvalue is established when the current and delay states are present in the feedback loop ...
Huang, Huang-Nan, Yong, Chew Chun
core +1 more source
This paper analyzes the stability of the Euler–Lagrange–Jensen cubic functional equation in the context of Banach spaces and Intuitionistic Fuzzy Normed Spaces (IFN‐Spaces). We use both direct and fixed point techniques to establish the generalized Ulam stability of the cubic functional equation under various norm‐based constraints.
Subramani Karthikeyan +4 more
wiley +1 more source
On the stability of J$^*-$derivations
In this paper, we establish the stability and superstability of $J^*-$derivations in $J^*-$algebras for the generalized Jensen--type functional equation $$rf(\frac{x+y}{r})+rf(\frac{x-y}{r})= 2f(x).$$ Finally, we investigate the stability of $J ...
A. Ebadian +25 more
core +2 more sources
Fuzzy Stability of Generalized Mixed Type Cubic, Quadratic, and Additive Functional Equation
In this paper, we prove the generalized Hyers-Ulam stability of generalized mixed type cubic, quadratic, and additive functional equation, in fuzzy Banach spaces. 2010 Mathematics Subject Classification: 39B82; 39B52.
Shin Dong +4 more
doaj
Approximately cubic functional equations and cubic multipliers
In this paper, we prove the Hyers-Ulam stability and the superstability for cubic functional equation by using the fixed point alternative theorem. As a consequence, we show that the cubic multipliers are superstable under some conditions.
Alias Idham +2 more
doaj
Fuzzy stabilities of a new hexic functional equation in various spaces
The advantage of various fuzzy normed spaces is to analyse impreciseness and ambiguity that arise in modelling problems. In this paper, various classical stabilities of a new hexic functional equation in di erent fuzzy spaces like fuzzy Banach space ...
Dutta Hemen +2 more
doaj +1 more source
Generalized Polynomials on Semigroups
This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups.
Ebanks Bruce
doaj +1 more source
Stability of an AQCQ functional equation in non-Archimedean (n, β)-normed spaces
In this paper, we adopt direct method to prove the Hyers-Ulam-Rassias stability of an additivequadratic-cubic-quartic functional ...
Liu Yachai, Yang Xiuzhong, Liu Guofen
doaj +1 more source

