Results 51 to 60 of about 581 (106)
Fuzzy Stability of Generalized Mixed Type Cubic, Quadratic, and Additive Functional Equation
In this paper, we prove the generalized Hyers-Ulam stability of generalized mixed type cubic, quadratic, and additive functional equation, in fuzzy Banach spaces. 2010 Mathematics Subject Classification: 39B82; 39B52.
Shin Dong +4 more
doaj
Approximately cubic functional equations and cubic multipliers
In this paper, we prove the Hyers-Ulam stability and the superstability for cubic functional equation by using the fixed point alternative theorem. As a consequence, we show that the cubic multipliers are superstable under some conditions.
Alias Idham +2 more
doaj
Pseudo almost periodic solutions of an iterative equation with variable coefficients
In this paper, the exponential dichotomy, and Tikhonov and Banach fixed point theorems are used to study the existence and uniqueness of pseudo almost periodic solutions of nonhomogeneous iterative functional differential equations of the form x.t/ D 1.t/
Houyu Zhao, Michal Feckan
semanticscholar +1 more source
In this article, we apply the Fourier transform to prove the Hyers-Ulam and Hyers-Ulam-Rassias stability for the first- and second-order nonlinear differential equations with initial conditions.
Selvam Arunachalam +2 more
doaj +1 more source
Stability of an AQCQ functional equation in non-Archimedean (n, β)-normed spaces
In this paper, we adopt direct method to prove the Hyers-Ulam-Rassias stability of an additivequadratic-cubic-quartic functional ...
Liu Yachai, Yang Xiuzhong, Liu Guofen
doaj +1 more source
Fuzzy stabilities of a new hexic functional equation in various spaces
The advantage of various fuzzy normed spaces is to analyse impreciseness and ambiguity that arise in modelling problems. In this paper, various classical stabilities of a new hexic functional equation in di erent fuzzy spaces like fuzzy Banach space ...
Dutta Hemen +2 more
doaj +1 more source
GENERALIZED STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN VARIOUS SPACES
. In this paper, using the direct and fixed point methods, we have established the generalized Hyers-Ulam stability of the following additive-quadratic functional equation in non-Archimedean and intuitionistic random normed spaces. AMS 2010 Subject
Shaymaa Alshybani
semanticscholar +1 more source
Stability of the Volterra Integrodifferential Equation [PDF]
In this paper, the Hyers-Ulam stability of the Volterra integrodifferential equation and the Volterra equation on the finite interval [0, T], T > 0, are studied, where the state x(t) take values in a Banach space ...
Janfada, Mohammad, Sadeghi, Gh.
core
Superstability of generalized cauchy functional equations
In this paper, we consider the stability of generalized Cauchy functional equations such as Especially interesting is that such equations have the Hyers-Ulam stability or superstability whether g is identically one or not.
Chung Soon-Yeong, Lee Young-Su
doaj
Generalized Polynomials on Semigroups
This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups.
Ebanks Bruce
doaj +1 more source

