Results 31 to 40 of about 937 (61)
A note on the spectral operators of scalar type and semigroups of bounded linear operators
It is shown that, for the spectral operators of scalar type, the well‐known characterizations of the generation of C0‐ and analytic semigroups of bounded linear operators can be reformulated exclusively in terms of the spectrum of such operators, the conditions on the resolvent of the generator being automatically met and the corresponding semigroup ...
Marat V. Markin
wiley +1 more source
On an abstract evolution equation with a spectral operator of scalar type
It is shown that the weak solutions of the evolution equation y′(t) = Ay(t), t ∈ [0, T) (0 < T ≤ ∞), where A is a spectral operator of scalar type in a complex Banach space X, defined by Ball (1977), are given by the formula y(t) = e tAf, t ∈ [0, T), with the exponentials understood in the sense of the operational calculus for such operators and the ...
Marat V. Markin
wiley +1 more source
Semigroup theory applied to options
Black and Scholes (1973) proved that under certain assumptions about the market place, the value of a European option, as a function of the current value of the underlying asset and time, verifies a Cauchy problem. We give new conditions for the existence and uniqueness of the value of a European option by using semigroup theory.
D. I. Cruz-Báez +1 more
wiley +1 more source
Fourth-order Schr\"odinger type operator with singular potentials
In this paper we study the biharmonic operator perturbed by an inverse fourth-order potential. In particular, we consider the operator $A=\Delta^2-V=\Delta^2-c|x|^{-4}$ where $c$ is any constant such that ...
Gregorio, Federica, Mildner, Sebastian
core +1 more source
On nonautonomous second‐order differential equations on Banach space
We show the existence and uniqueness of classical solutions of the nonautonomous second‐order equation: u″(t) = A(t)u′(t) + B(t)u(t) + f(t), 0 ≤ t ≤ T; u(0) = x0, u′(0) = x1 on a Banach space by means of operator matrix method and apply to Volterra integrodifferential equations.
Nguyen Thanh Lan
wiley +1 more source
On the operator equation A X − X B = C with unbounded operators A, B, and C
We find the criteria for the solvability of the operator equation A X − X B = C, where A, B, and C are unbounded operators, and use the result to show existence and regularity of solutions of nonhomogeneous Cauchy problems.
Nguyen Thanh Lan
wiley +1 more source
Semigroup estimates and fast-slow dynamics in parabolic-hyperbolic systems
We present a general procedure to describe slow dynamics in parabolic-hyperbolic systems, under suitable assumptions on the terms appearing in the equations. In particular, our strategy relies in semigroup estimates for the evolution system associated to
Strani Marta
doaj +1 more source
B‐bounded semigroups and implicit evolution equations
The aim of this paper is to show an application of the recently introduced B‐bounded semigroups in the theory of implicit and degenerate evolution equations. The most interesting feature of this approach is its applicability to problems with noncloseable operators.
J. Banasiak
wiley +1 more source
In this manuscript, we have a tendency to execute Banach contraction fixed point theorem combined with resolvent operator to analyze the exact controllability results for fractional neutral integro-differential systems (FNIDS) with state-dependent delay (
Kailasavalli S. +3 more
doaj +1 more source
A distributional approach to fragmentation equations [PDF]
We consider a linear integro-di®erential equation that models multiple fragmentation with inherent mass-loss. A systematic procedure is presented for constructing a space of generalised functions Z0 in which initial-value problems involving singular ...
Lamb, Wilson, Mcbride, Adam
core

