Results 21 to 30 of about 3,909 (125)
Randers manifolds of positive constant curvature
We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd‐dimensional sphere, provided a certain 1‐form vanishes on it.
Aurel Bejancu, Hani Reda Farran
wiley +1 more source
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature ...
Calamai Simone, Petrecca David
doaj +1 more source
Homogeneous Riemannian Structures on Berger 3-Spheres [PDF]
13 pages.-- MSC2000 codes: 53C30, 53C25.The homogeneous Riemannian structures on the 3-dimensional Berger spheres, their corresponding reductive decompositions and the associated groups of isometries are obtained.
Grosshans, Frank D.+2 more
core +1 more source
A note on Chen′s basic equality for submanifolds in a Sasakian space form
It is proved that a Riemannian manifold M isometrically immersed in a Sasakian space form M˜(c) of constant φ‐sectional curvature c < 1, with the structure vector field ξ tangent to M, satisfies Chen′s basic equality if and only if it is a 3‐dimensional minimal invariant submanifold.
Mukut Mani Tripathi+2 more
wiley +1 more source
Some submersions of CR‐hypersurfaces of Kaehler‐Einstein manifold
The Riemannian submersions of a CR‐hypersurface M of a Kaehler‐Einstein manifold M˜ are studied. If M is an extrinsic CR‐hypersurface of M˜, then it is shown that the base space of the submersion is also a Kaehler‐Einstein manifold.
Vittorio Mangione
wiley +1 more source
On submersion and immersion submanifolds of a quaternionic projective space
We study submanifolds of a quaternionic projective space, it is of great interest how to pull down some formulae deduced for submanifolds of a sphere to those for submanifolds of a quaternionic projective space.
Abedi Esmail, Nazari Zahra
doaj +1 more source
Foliations by minimal surfaces and contact structures on certain closed 3‐manifolds
Let (M, g) be a closed, connected, oriented C∞ Riemannian 3‐manifold with tangentially oriented flow F. Suppose that F admits a basic transverse volume form μ and mean curvature one‐form κ which is horizontally closed. Let {X, Y} be any pair of basic vector fields, so μ(X, Y) = 1.
Richard H. Escobales Jr.
wiley +1 more source
Uniform K-stability of polarized spherical varieties [PDF]
We express notions of K-stability of polarized spherical varieties in terms of combinatorial data, vastly generalizing the case of toric varieties.
Thibaut Delcroix
doaj +1 more source
The local moduli of Sasakian 3‐manifolds
The Newman‐Penrose‐Perjes formalism is applied to Sasakian 3‐manifolds and the local form of the metric and contact structure is presented. The local moduli space can be parameterised by a single function of two variables and it is shown that, given any smooth function of two variables, there exists locally a Sasakian structure with scalar curvature ...
Brendan S. Guilfoyle
wiley +1 more source
Ricci curvature of submanifolds in Kenmotsu space forms
In 1999, Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. Similar problems for submanifolds in complex space forms were studied by Matsumoto et al.
Kadri Arslan+4 more
wiley +1 more source