Results 41 to 50 of about 2,136 (100)
Lorentzian Para‐Kenmotsu Manifolds Within the Framework of ∗‐Conformal η‐Ricci Soliton
The present article intends to study the ∗‐conformal η‐Ricci soliton on n‐LPK (n‐dimensional Lorentzian para‐Kenmotsu) manifolds with curvature constraints. On n‐LPK, we derive certain results of ∗‐conformal η‐Ricci soliton satisfying the Codazzi‐type equation, R(ξ, L) · S = 0, the projective flatness of the n‐LPK manifold. At last, we conclude with an
Shyam Kishor +4 more
wiley +1 more source
On some compact almost Kähler locally symmetric space
In the framework of studying the integrability of almost Kähler manifolds, we prove that if a compact almost Kähler locally symmetric space M is a weakly ,∗‐Einstein vnanifold with non‐negative ,∗‐scalar curvature, then M is a Kähler manifold.
Takashi Oguro
wiley +1 more source
On Almost Generalized Weakly Symmetric LP-Sasakian Manifolds
The purpose of this paper is to introduce the notions of an almost generalized weakly symmetric LP-Sasakian manifolds and an almost generalized weakly Ricci-symmetric LP-Sasakian manifolds.
Baishya Kanak Kanti +1 more
doaj +1 more source
Some New Characterizations of Trivial Ricci–Bourguignon Solitons
A Ricci–Bourguignon soliton is a self‐similar solution to the Ricci–Bourguignon flow equation, and a Ricci–Bourguignon soliton is called trivial if its potential field is zero or killing. Each trivial Ricci–Bourguignon soliton is an Einstein manifold.
Hana Al-Sodais +5 more
wiley +1 more source
On normally flat Einstein submanifolds
The purpose of this paper is to study the second fundamental form of some submanifolds Mn in Euclidean spaces 𝔼m which have flat normal connection. As such, Theorem gives precise expressions for the (essentially 2) Weingarten maps of all 4‐dimensional Einstein submanifolds in 𝔼6, which are specialized in Corollary 2 to the Ricci flat submanifolds.
Leopold Verstraelen +1 more
wiley +1 more source
On Kropina Change of m-th Root Finsler Metrics [PDF]
In this paper, we consider Kropina change of $m$-th root Finsler metrics. We find necessary and sufficient condition under which the Kropina change of an $m$-th root Finsler metric be locally dually flat.
Peyghan, E. +2 more
core
Some calibrated surfaces in manifolds with density
Hyperplanes, hyperspheres and hypercylinders in $\Bbb R^n$ with suitable densities are proved to be weighted minimizing by a calibration argument. Also calibration method is used to prove a weighted minimal hypersurface is weighted area-minimizing ...
Barbosa +17 more
core +1 more source
Harmonic (p, q)‐Curves in Trans‐Sasakian and Normal Almost Paracontact Metric Manifolds
In this paper, we give some characterizations about biharmonic, f‐harmonic, and f‐biharmonic (p, q)‐curves in 3‐dimensional trans‐Sasakian and normal almost paracontact metric manifolds. The (p, q)‐curves are considered as generalizations of magnetic curves.
Murat Altunbaş, B. B. Upadhyay
wiley +1 more source
On the Ricci tensor of real hypersurfaces of quaternionic projective space
We study some conditions on the Ricci tensor of real hypersurfaces of quaternionic projective space obtaining among other results an improvement of the main theorem in [9].
Juan De Dios Perez
wiley +1 more source
Ricci solitons on almost Kenmotsu 3-manifolds
Let (M3, g) be an almost Kenmotsu 3-manifold such that the Reeb vector field is an eigenvector field of the Ricci operator. In this paper, we prove that if g represents a Ricci soliton whose potential vector field is orthogonal to the Reeb vector field ...
Wang Yaning
doaj +1 more source

