Results 141 to 150 of about 4,295,538 (284)

DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss

open access: yesAdvanced Science, EarlyView.
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim   +11 more
wiley   +1 more source

Endometrial Assembloid Model Reveals Endometrial Gland Development Regulation by Estradiol‐Driven WNT7B Suppression

open access: yesAdvanced Science, EarlyView.
This study developed a 3D endometrial assembloid model to study how uterine glands form and develop. They discovered key interactions between different cell types and identified WNT7B as a regulator controlled by estradiol‐mediated TGFβ1‐VDR interaction.
Xintong Li   +12 more
wiley   +1 more source

Precise Regulation of Membrane Proteins: From Physical Technology to Biomolecular Strategy

open access: yesAdvanced Science, EarlyView.
This review summarizes the emerging strategies for the precise regulation of membrane proteins using physical stimuli and biomolecule‐based tools. These methods provide new insights into cell regulation and offer promising directions for future disease treatment.
Xiu Zhao   +6 more
wiley   +1 more source

Extremal graphs with respect to generalized ABC index

open access: yesDiscrete Applied Mathematics, 2018
Xiaodan Chen, Guoliang Hao
semanticscholar   +1 more source

The Disordered Region of ASXL1 Acts as an Auto‐Regulator Through Condensation

open access: yesAdvanced Science, EarlyView.
ASXL1's long IDR encodes an electrostatic “basic platform + acidic brake” that autoregulates condensation. Truncation at a clinical hotspot lifts this brake, forming condensates that retarget BRD2, remodel local chromatin accessibility, and impair neutrophil maturation.
Xiao Fang, Qiwei Li, Wenqing Zhang
wiley   +1 more source

On the third ABC index of trees and unicyclic graphs

open access: yes
Abstract Let $G=(V,E)$ be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The third atom-bond connectivity index, $ABC_3$ index, of $G$ is defined as $ABC_3(G)=\sum\limits_{uv\in E(G)}\sqrt{\frac{e(u)+e(v)-2}{e(u)e(v)}}$, where eccentricity $e(u)$ is the largest distance between $u$ and any other vertex of $G$, namely $e(u)=
openaire   +2 more sources

Postoperative Stress Accelerates Atherosclerosis Through Inflammatory Remodeling of the HDL Proteome and Impaired Reverse Cholesterol Transport

open access: yesAdvanced Science, EarlyView.
The study shows that noncardiac surgical inflammation rapidly disrupts HDL function and cholesterol efflux in mice and human patients. Impaired reverse cholesterol transport after surgery drives rapid lipid accumulation, NETosis, and apoptosis within atherosclerotic plaques.
Dominique M. Boucher   +15 more
wiley   +1 more source

CDK4/6 Inhibition Induces CD8+ T Cell Antitumor Immunity via MIF‐Induced Functional Orchestration of Tumor‐Associated Macrophages

open access: yesAdvanced Science, EarlyView.
CDK4/6 inhibition promotes CD8+ T cell expansion through tumor‐macrophage crosstalk by activating HIF‐1α and enhancing MIF‐CD44/CD74 signaling. This reprograms TAMs to boost MHC‐I antigen presentation, and CDK4/6 inhibitor‐trained M1 TAM supernatant therapy synergizes with low‐dose PD‐1 blockade to restore antitumor immunity.
Lin He   +17 more
wiley   +1 more source

Ferroptosis‐Mediated Hippocampal Neuronal Loss Post‐mTBI: Chromatin Accessibility Profiling and Single‐Nucleus Transcriptomics

open access: yesAdvanced Science, EarlyView.
Hippocampal single ‐nucleus transcriptomes and chromatin accessibility after mild traumatic brain injury reveal dentate granule neuron vulnerability driven by ferroptosis. The c‐Jun–Tmsb4x–Slc2a2 axis modulates lipid peroxidation and iron dysregulation.
Manrui Li   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy