Results 241 to 250 of about 2,025,304 (349)

Dynamics of the Mammalian Placental Metabolome in Placentogenesis and Embryonic Development

open access: yesAdvanced Science, EarlyView.
This study identifies three metabolic stages (E8.5, E9.5–10.5, E11.5–14.5) and two transition periods (E8.5–9.5, E10.5–11.5) in mouse placental development. NAD(H) emerges as a key dynamic metabolite that enhances embryonic growth through accelerated segmentation and increased proliferation of mouse embryonic stem cell (mESC)‐induced presomitic ...
Gang Chen   +11 more
wiley   +1 more source

Knowledge mobilization with and for equity-deserving communities invested in research: A scoping review protocol. [PDF]

open access: yesPLoS One
Barhouche R   +6 more
europepmc   +1 more source

Gut Microbiota‐Derived Anandamide Mediates the Therapeutic Effects of Urolithin A on Alcohol‐Induced Cognitive and Social Dysfunction via CB1R‐DRD2‐RAP1 Signaling Axis

open access: yesAdvanced Science, EarlyView.
This study reveals that Urolithin A (UA) counteracts alcohol‐induced cognitive and social dysfunction (AICSD) via a gut microbiome‐dependent mechanism. UA‐enriched Bacteroids sartorii and Parabacteroids distasonis elevate anandamide (AEA), which activates the CB1R‐DRD2‐Rap1 signaling cascade to drive synaptic repair and reduce neuroinflammation ...
Hongbo Zhang   +9 more
wiley   +1 more source

Metformin Impairs Breast Cancer Growth through the Inhibition of PRMT6

open access: yesAdvanced Science, EarlyView.
Metformin has a biological activity against breast cancer. However, it is largely unknown about its precise therapeutic targets. Here, histone arginine methyltransferase PRMT6 is identified as a new anti‐cancer target for metformin. Metformin directly binds PRMT6 and inhibits its ability to catalyze histone H3R2 asymmetric dimethylation (H3R2me2a ...
Yinsheng Wu   +9 more
wiley   +1 more source

CellPolaris: Transfer Learning for Gene Regulatory Network Construction to Guide Cell State Transitions

open access: yesAdvanced Science, EarlyView.
CellPolaris decodes how transcription factors guide cell fate by building gene regulatory networks from transcriptomic data using transfer learning. It generates tissue‐ and cell‐type‐specific networks, identifies master regulators in cell state transitions, and simulates TF perturbations in developmental processes.
Guihai Feng   +27 more
wiley   +1 more source

Home - About - Disclaimer - Privacy