Results 111 to 120 of about 355,602 (264)
NDST3‐Induced Epigenetic Reprogramming Reverses Neurodegeneration in Parkinson's Disease
NDST3‐mediated epigenetic reprogramming revitalizes neuronal circuits in the substantia nigra and striatum to halt dopaminergic neuron degeneration and restore motor function in Parkinson's disease models. This strategy promotes neuronal maintenance and functional recovery, highlighting NDST3's therapeutic potential in neurodegenerative disorders ...
Yujung Chang +18 more
wiley +1 more source
Erratum: Delivery of MSCs with a Hybrid β-Sheet Peptide Hydrogel Consisting IGF-1C Domain and D-Form Peptide for Acute Kidney Injury Therapy [Corrigendum]. [PDF]
europepmc +1 more source
Tendon Organoids Enable Functional Tendon Rejuvenation Through ALKBH5‐Dependent RNA Demethylation
FT organoids reverse the aged phenotype of tendon cells, reinstating a fetal‐like state. This breakthrough establishes a potent cell source for tendon tissue engineering, effectively advancing regenerative medicine. ABSTRACT Adult tendon injuries pose a major clinical challenge due to limited self‐repair capacity, resulting in suboptimal regeneration ...
Tian Qin +14 more
wiley +1 more source
Particulate matter ≤2.5 µm (PM2.5) elevates risks of neurological and chronic metabolic diseases, but the underlying mechanisms linking PM2.5‐induced central nervous system (CNS) injury to metabolic dysfunction remain unclear. Hypothalamic pro‐opiomelanocortin‐expressing (POMC+) neurons regulate systemic metabolic homeostasis, and tripartite motif ...
Chenxu Ge +21 more
wiley +1 more source
Hyperglycemia during pregnancy impairs the fusion of trophoblast cells into syncytiotrophoblasts, leading to fetal growth restriction. This impaired fusion is mediated by Tim1 downregulation via hyperglycemia‐induced ROS. Antioxidant therapy during pregnancy promotes syncytiotrophoblast formation by upregulating Tim1 expression, thus alleviating fetal ...
Junsen She +14 more
wiley +1 more source
ROS-responsive cellular vesicles with ferroptosis-targeting siACMSD delivery for acute kidney injury therapy. [PDF]
Zhang Y +9 more
europepmc +1 more source
The interplay and interaction between frailty and acute kidney injury
Lameire, Norbert +2 more
core +1 more source
This study develops gallium‐doped V2C MXene nanozymes (Ga‐V2C) to treat acetaminophen‐induced liver injury through multi‐death pathway blockade and hepatocyte regeneration. Unlike conventional single‐target therapies like N‐acetylcysteine, Ga‐V2C nanozymes enable oxidative stress suppression, apoptosis, and ferroptosis inhibition, and enhanced ...
Xiaopeng Cai +13 more
wiley +1 more source
Charge-dependent mitochondrial targeting of cerium-doped polypyrrole nanoparticles to injured renal tubules for acute kidney injury therapy. [PDF]
Huang M +14 more
europepmc +1 more source
In this study, we constructed a nanoparticle that was CD4 antibody‐mediated targeted, Fut7‐expressing plasmid‐loaded cationic liposome, namely CD4‐LDP‐Fut7. Upregulation of Fut7 expression in Tregs by using CD4‐LDP‐Fut7 can increase Treg homing to the intestine, thereby facilitating repair of the intestinal epithelial barrier and inhibiting ...
Qian Zhou +13 more
wiley +1 more source

