Results 81 to 90 of about 65,724 (209)
This work presents a novel, dynamically perfused, configurable microfluidic system for epidermis‐only (E and full‐thickness skin (FT SoC) growth, emulating human skin structure and barrier function. Upon TiO2 nanoparticle exposure, the system reveals compromised barrier integrity, reduced metabolic activity, increased permeability, and chemokine‐driven
Samantha Costa +7 more
wiley +1 more source
Osteoporosis from long‐term glucocorticoid (GIOP) use elevates susceptibility to fracture. This study shows GCs impair ascorbic acid (AA) metabolism in osteoblasts, collagen synthesis and extracellular matrix integrity. AA enhanced collagen biochemical and mechanical properties and restored osteoblast and endothelial function. These findings underscore
Micaila DE Curtis +19 more
wiley +1 more source
Metallofullerenol Sc3N@C80(OH)18 demonstrates strong radioprotective properties as a scavenger of both short‐ and long‐lived radicals. The study reveals protection of human erythrocytes from γ‐radiation–induced biochemical damage via post‐irradiation removal of primary and secondary reactive oxidants, supported by pulse radiolysis kinetics.
Jacek Grebowski +6 more
wiley +1 more source
We developed a micro‐sized, biocompatible implant for postoperative sustained delivery of anti‐fibrotic antibodies in glaucoma surgery. Machine learning‐guided optimization of polymer composition, implant geometry, and porosity enabled precise control of drug release.
Mengqi Qin +5 more
wiley +1 more source
3D Printing Strategies for Bioengineering Human Cornea
This review highlights recent progress in 3D bioprinting strategies for engineering human corneas. Key aspects include the replication of corneal transparency, curvature, and biomechanical properties, alongside innovations in recent advancements in 3D printing methods, which benefit in overcoming current challenges.
Yunong Yuan +4 more
wiley +1 more source
Soil erosion is one of the most devastating soil degradation processes. In temperate climate regions, soil erosion rarely assumes excessive proportions. In the management of forest soil, the potential erosion threat drastically increases with an increase
Nikola Pernar +4 more
doaj +2 more sources
A novel method that combines 3D printing and organ‐on‐chip technology enables the creation of hollow channels lined with endothelial cells through a fibroblast‐populated connective tissue matrix. The model supports stable metabolic culture conditions, angiogenic sprouting, and immune cell migration, thereby demonstrating an easy and versatile method to
Jonas Jäger +7 more
wiley +1 more source
Models of the human skin must combine the relevant biological contents and suitable biomaterials with the correct spatial organization. Performing compound screening on such in vitro models also requires fast and reproducible production methods of the models.
Elisa Lenzi +7 more
wiley +1 more source
Advances in Bioprinting to Model Immune‐Mediated Skin Diseases
This review explores how 3D bioprinting drives innovation in developing in vitro skin models that mimic immune‐mediated diseases. It highlights current technologies, key applications in studying skin pathologies, and emerging challenges. The review points toward future opportunities for improving disease modeling and advancing therapeutic and cosmetic ...
Andrea Ulloa‐Fernández +4 more
wiley +1 more source
In ophthalmology, living biomaterials such as living contact lenses appear promising for sustained drug delivery or biosensing. The cytocompatibility of Cg‐PVA hydrogels, developed as a model living contact lens, is investigated with the ocular surface, showing their potential translation to the clinic.
Krupansh Desai +6 more
wiley +1 more source

