Results 291 to 300 of about 1,750,632 (381)
On embedding separable spaces C ( L ) in arbitrary spaces C ( K ). [PDF]
Rondoš J, Sobota D.
europepmc +1 more source
This manuscript demonstrates the improvements that single photon sources can gain if their source of excitation is quantum rather than classical. Illuminating a pair of identical two‐level systems, the author shows that the excitation with pulses of quantum light yields more antibunched and more indistinguishable emission than if the excitation were ...
Juan Camilo López Carreño
wiley +1 more source
Analysis of hybrid fractional integro-differential equations with application to cholera dynamics. [PDF]
Algolam MS +4 more
europepmc +1 more source
The Graded Lie Algebras of an Algebra
openaire +3 more sources
On the section conjecture over fields of finite type
Abstract Assume that the section conjecture holds over number fields. We prove then that it holds for a broad class of curves defined over finitely generated extensions of Q$\mathbb {Q}$. This class contains every projective, hyperelliptic curve, every hyperbolic, affine curve of genus ≤2$\le 2$, and a basis of open subsets of any curve.
Giulio Bresciani
wiley +1 more source
4D hypercomplex-valued neural network in multivariate time series forecasting. [PDF]
Kycia R, Niemczynowicz A.
europepmc +1 more source
Metaplectic operators with quasi‐diagonal kernels
Abstract Metaplectic operators form a relevant class of operators appearing in different applications, in this work we study their Schwartz kernels. Namely, diagonality of a kernel is defined by imposing rapid off‐diagonal decay conditions, and quasi‐diagonality by imposing the same conditions on the smoothing of the kernel through convolution with the
Gianluca Giacchi, Luigi Rodino
wiley +1 more source
Nontriviality of rings of integral‐valued polynomials
Abstract Let S$S$ be a subset of Z¯$\overline{\mathbb {Z}}$, the ring of all algebraic integers. A polynomial f∈Q[X]$f \in \mathbb {Q}[X]$ is said to be integral‐valued on S$S$ if f(s)∈Z¯$f(s) \in \overline{\mathbb {Z}}$ for all s∈S$s \in S$. The set IntQ(S,Z¯)${\mathrm{Int}}_{\mathbb{Q}}(S,\bar{\mathbb{Z}})$ of all integral‐valued polynomials on S$S ...
Giulio Peruginelli, Nicholas J. Werner
wiley +1 more source

