The identities and the central polynomials of the infinite dimensional unitary Grassmann algebra over a finite field [PDF]
C. Bekh-Ochir, S. A. Rankin
openalex +1 more source
Weak Hopf tube algebra for domain walls between 2d gapped phases of Turaev-Viro TQFTs
We investigate domain walls between 2d gapped phases of Turaev-Viro type topological quantum field theories (TQFTs) by constructing domain wall tube algebras.
Zhian Jia, Sheng Tan
doaj +1 more source
On group identities for the unit group of algebras and semigroup algebras over an infinite field
Ann Dooms, Eric Jespers, S. O. Juriaans
openalex +1 more source
Chapter 2. Part 2. Full $G_{\mathfrak p}$-subfields over algebraic number fields [PDF]
Yasutaka Ihara, Yasutaka Ihara
openalex +1 more source
On the non-special divisors in algebraic function fields defined over finite fields [PDF]
Stéphane Ballet, M Koutchoukali
openalex +1 more source
On maximal orders of division quaternion algebras over the rational number field with certain optimal embeddings [PDF]
Tomoyoshi Ibukiyama
openalex +1 more source
Matrices over orders in algebraic number fields as sums of $k$-th powers [PDF]
S. A. Katre, Sangita A. Khule
openalex +1 more source
Algebraic varieties and function fields over a finite field
Nous nous intéressons au nombre de points rationnels des variétés algébriques projectives sur un corps fini. Nous déterminons notamment la fonction zêta (et plus précisément les polynômes caractéristiques de l'endomorphisme de Frobenius sur les espaces de cohomologie étale l-adique) des courbes algébriques projectives sans autre hypothèse de lissité ou
openaire +1 more source
A residue scalar product for algebraic function fields over a number field
In 1952 Peter Roquette gave an arithmetic proof of the Riemann hypothesis for algebraic function fields of a finite constants field, which was proved by Andr Weil in 1940. The construction of Weil's scalar product is essential in Roquette's proof. In this paper a scalar product for algebraic function fields over a number field is constructed which is
openaire +2 more sources

