Results 41 to 50 of about 189,405 (333)
p-Algebras over an algebraic function field over a perfect field
Verf. beweist folgenden Satz: Sei K ein algebraischer Funktionen-Körper in r Variablen über einem vollkommenen Körper. Jede p-Algebra A über K ist Brauer-äquivalent dem Kroneckerprodukt von r zyklischen Divisionsalgebren \(D_ i\) mit Exponent \(D_ i=Index D_ i\) und Exponent \(D_ i\leq Exponent A\). Für \(r=1\) ist das ein bekannter Satz von A.
openaire +3 more sources
On derivations of linear algebras of a special type
In this work, Lie algebras of differentiation of linear algebra, the operation of multiplication in which is defined using a linear form and two fixed elements of the main field are studied. In the first part of the work, a definition of differentiation
A. Ya. Sultanov +2 more
doaj +1 more source
Gradings on Algebras over Algebraically Closed Fields [PDF]
The classification, both up to isomorphism or up to equivalence, of the gradings on a finite dimensional nonassociative algebra A over an algebraically closed field F, such that its group scheme of automorphisms is smooth, is shown to be equivalent to the corresponding problem for the scalar extension A_K for any algebraically closed field extension K.
openaire +3 more sources
Hydrogel‐Based Capacitive Sensor Model for Ammonium Monitoring in Aquaculture
Traditional techniques for monitoring aquaculture water quality, particularly ammonium levels, harm fish. This work presents a novel capacitive sensor with an ionic hydrogel transducer to monitor ammonium concentration in real time based on the ammonium‐induced hydrogel dissociation and osmotic pressure. Monitoring aquaculture water quality, especially
Mohammad Mirzaee+3 more
wiley +1 more source
Theorem on the norm of elements of spinor groups
In this article we consider Clifford's algebra over the field of real numbers of finite dimension. We define the operation of Hermitian conjugation for the elements of Clifford's algebra.
D. S. Shirokov
doaj +3 more sources
In this study, exciting new bi‐/multi‐linear elastic behavior of soft elastic composites that accompany the activation of wrinkling in the embedded interfacial layers is analyzed. The new features and performance of these composite materials, including dramatic enhancements in energy storage, can be tailored by the concentration of interfacial layers ...
Narges Kaynia+2 more
wiley +1 more source
The Variety of Two-dimensional Algebras Over an Algebraically Closed Field [PDF]
The work is devoted to the variety of two-dimensional algebras over algebraically closed fields. First we classify such algebras modulo isomorphism.
I. Kaygorodov, Y. Volkov
semanticscholar +1 more source
Topology in Biological Piezoelectric Materials
This review summarizes the topological structures in biological piezoelectric materials, covering morphology evolution, spatial arrangement, and biomimetic strategies. These topologies modulate structure‐property relationships across multiple scales, enabling performance enhancement and multifunctional integration.
Chen Chen+7 more
wiley +1 more source
An elementary approach to the model structure on DG-Lie algebras [PDF]
This paper contains an elementary proof of the existence of the classical model structure on the category of unbounded DG-Lie algebras over a field of characteristic zero, with an emphasis on the properties of free and semifree extensions, which are ...
Emma Lepri
doaj
Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we extend this formalism with a connector for affine behaviour.
F. Bonchi+3 more
semanticscholar +1 more source