Results 111 to 120 of about 379,338 (251)

Kronecker classes of algebraic number fields

open access: yesJournal of Number Theory, 1977
Es sei \(K\) eine endliche Erweiterung des algebraischen Zahlkörpers \(k\). Die Menge aller Primdivisoren von \(k\), die einen Primteiler vom ersten Relativgrad in \(K\) haben, heißt die Kronecker-Menge von \(K/k\). Zwei endliche Erweiterungen heißen Kronecker-äquivalent, wenn sie bis auf eine endliche Menge die gleichen Kronecker-Mengen haben.
openaire   +3 more sources

Character Sums in Algebraic Number Fields

open access: yesJournal of Number Theory, 1994
Let \(K\) be an algebraic number field of degree \([K:\mathbb{Q}]= r_ 1+ 2r_ 2\). Let \(e_ p=1\) for \(p=1,\dots,r_ 1\), \(e_ p=2\) for \(p= r_ 1+1,\dots, r+1= r_ 1+r_ 2\). Put \(X= \prod_{p=1}^{r+1} x_ p^{e_ p}\), where \(x=(x_ 1,\dots, x_{r+1})\) is a vector of positive real numbers.
openaire   +3 more sources

The number of rational points of some classes of algebraic varieties over finite fields

open access: yesOpen Mathematics
Let Fq{{\mathbb{F}}}_{q} be the finite field of characteristic pp and Fq*=Fq\{0}{{\mathbb{F}}}_{q}^{* }\left={{\mathbb{F}}}_{q}\backslash \left\{0\right\}.
Zhu Guangyan   +3 more
doaj   +1 more source

On finite arithmetic groups [PDF]

open access: yesInternational Journal of Group Theory, 2013
Let $F$ be a finite extension of $Bbb Q$, ${Bbb Q}_p$ or a globalfield of positive characteristic, and let $E/F$ be a Galois extension.We study the realization fields offinite subgroups $G$ of $GL_n(E)$ stable under the naturaloperation of the Galois ...
Dmitry Malinin
doaj  

Character sums in algebraic number fields

open access: yesJournal of Number Theory, 1983
AbstractThe Pólya-Vinogradov inequality is generalized to arbitrary algebraic number fields K of finite degree over the rationals. The proof makes use of Siegel's summation formula and requires results about Hecke's zeta-functions with Grössencharacters.
openaire   +2 more sources

Home - About - Disclaimer - Privacy