Results 111 to 120 of about 379,338 (251)
Kronecker classes of algebraic number fields
Es sei \(K\) eine endliche Erweiterung des algebraischen Zahlkörpers \(k\). Die Menge aller Primdivisoren von \(k\), die einen Primteiler vom ersten Relativgrad in \(K\) haben, heißt die Kronecker-Menge von \(K/k\). Zwei endliche Erweiterungen heißen Kronecker-äquivalent, wenn sie bis auf eine endliche Menge die gleichen Kronecker-Mengen haben.
openaire +3 more sources
Some theorems on prime ideals in algebraic number fields [PDF]
G. J. Rieger
openalex +1 more source
Character Sums in Algebraic Number Fields
Let \(K\) be an algebraic number field of degree \([K:\mathbb{Q}]= r_ 1+ 2r_ 2\). Let \(e_ p=1\) for \(p=1,\dots,r_ 1\), \(e_ p=2\) for \(p= r_ 1+1,\dots, r+1= r_ 1+r_ 2\). Put \(X= \prod_{p=1}^{r+1} x_ p^{e_ p}\), where \(x=(x_ 1,\dots, x_{r+1})\) is a vector of positive real numbers.
openaire +3 more sources
Inequalities for ideal bases in algebraic number fields [PDF]
K. Mahler
openalex +1 more source
The number of rational points of some classes of algebraic varieties over finite fields
Let Fq{{\mathbb{F}}}_{q} be the finite field of characteristic pp and Fq*=Fq\{0}{{\mathbb{F}}}_{q}^{* }\left={{\mathbb{F}}}_{q}\backslash \left\{0\right\}.
Zhu Guangyan +3 more
doaj +1 more source
On finite arithmetic groups [PDF]
Let $F$ be a finite extension of $Bbb Q$, ${Bbb Q}_p$ or a globalfield of positive characteristic, and let $E/F$ be a Galois extension.We study the realization fields offinite subgroups $G$ of $GL_n(E)$ stable under the naturaloperation of the Galois ...
Dmitry Malinin
doaj
On the Goldbach problem in an algebraic number field I. [PDF]
Takayoshi Mitsui
openalex +1 more source
Character sums in algebraic number fields
AbstractThe Pólya-Vinogradov inequality is generalized to arbitrary algebraic number fields K of finite degree over the rationals. The proof makes use of Siegel's summation formula and requires results about Hecke's zeta-functions with Grössencharacters.
openaire +2 more sources
The Diophantine equation $x^4 + y^4 = 1$ in algebraic number fields [PDF]
L. J. Mordell
openalex +1 more source

