Results 281 to 290 of about 1,123,629 (349)
Some of the next articles are maybe not open access.
Abstracts from the workshop held June 19--25, 2011; Vol. 8, no. 2, 1709-1768, 2011
B. Howard +3 more
semanticscholar +3 more sources
B. Howard +3 more
semanticscholar +3 more sources
2021
This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic. The author presents the topic here by first offering a brief introduction to number
openaire +2 more sources
This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic. The author presents the topic here by first offering a brief introduction to number
openaire +2 more sources
Algebra and Algebraic Number Theory
1992The 19th century was an age of deep qualitative transformations and, at the same time, of great discoveries in all areas of mathematics, including algebra. The transformation of algebra was fundamental in nature. Between the beginning and the end of the last century, or rather between the beginning of the last century and the twenties of this century ...
I. G. Bashmakova, A. N. Rudakov
openaire +1 more source
2002
Public-key cryptosystems are based on modular arithmetic. In this section, we summarize the concepts and results from algebra and number theory which are necessary for an understanding of the cryptographic methods. Textbooks on number theory and modular arithmetic include [HarWri79], [IreRos82], [Rose94], [Forster96] and [Rosen2000].
Hans Delfs, Helmut Knebl
openaire +1 more source
Public-key cryptosystems are based on modular arithmetic. In this section, we summarize the concepts and results from algebra and number theory which are necessary for an understanding of the cryptographic methods. Textbooks on number theory and modular arithmetic include [HarWri79], [IreRos82], [Rose94], [Forster96] and [Rosen2000].
Hans Delfs, Helmut Knebl
openaire +1 more source
1982
In this chapter we shall introduce the concept of an algebraic number field and develop its basic properties. Our treatment will be classical, developing directly only those aspects that will be needed in subsequent chapters. The study of these fields, and their interaction with other branches of mathematics forms a vast area of current research.
Kenneth Ireland, Michael Rosen
openaire +1 more source
In this chapter we shall introduce the concept of an algebraic number field and develop its basic properties. Our treatment will be classical, developing directly only those aspects that will be needed in subsequent chapters. The study of these fields, and their interaction with other branches of mathematics forms a vast area of current research.
Kenneth Ireland, Michael Rosen
openaire +1 more source
A course in computational algebraic number theory
Graduate texts in mathematics, 1993H. Cohen
semanticscholar +1 more source
1991
This book originates from graduate courses given in Cambridge and London. It provides a brisk, thorough treatment of the foundations of algebraic number theory, and builds on that to introduce more advanced ideas. Throughout, the authors emphasise the systematic development of techniques for the explicit calculation of the basic invariants, such as ...
A. Fröhlich, M. J. Taylor
openaire +1 more source
This book originates from graduate courses given in Cambridge and London. It provides a brisk, thorough treatment of the foundations of algebraic number theory, and builds on that to introduce more advanced ideas. Throughout, the authors emphasise the systematic development of techniques for the explicit calculation of the basic invariants, such as ...
A. Fröhlich, M. J. Taylor
openaire +1 more source

