Results 131 to 140 of about 11,282 (312)
Current Effect on the Performances of All-Solid-State Lithium-Ion Batteries. Peuckert’s Law
Alexander Rudy +3 more
openalex +2 more sources
Leveraging the numerous advantages of ammonium‐ion (NH₄⁺)—including cost‐effectiveness, low corrosiveness, preferential orientation, and rapid diffusion kinetics—aqueous NH₄⁺ batteries (AAIBs) have gained significant attention. This review highlights and evaluates the progress of AAIBs utilizing organic electrode materials such as small molecules ...
Mangmang Shi, Xiaoyan Zhang
wiley +1 more source
Review of Thin Lithium Metal Battery Anode Fabrication – Microstructure – Electrochemistry Relations
Thin, lightweight lithium‐metal anodes are pivotal for practical high‐energy batteries. This review surveys processing routes that convert diverse Li precursors, e.g., ingots, melts, solutions, and vapor, into Li‐rich foils with controlled thickness, areal density, and tailored functionality.
Yuhang Hu +6 more
wiley +1 more source
Bottlebrush molecular architecture prevents the crystallization of high molecular weight polyethylene glycol (PEG) based polymers, enabling highly stretchable photocurable PEG hydrogels and elastomers for high‐performance conductive solvent‐free electrolytes at room temperature and for additive manufacturing of complex architectures and multi‐material ...
Baiqiang Huang +5 more
wiley +1 more source
Development of Porous Silicon(Si) Anode Through Magnesiothermic Reduction of Mesoporous Silica(SiO2) Aerogel for All-Solid-State Lithium-Ion Batteries [PDF]
Pratik S. Kapadnis +5 more
openalex +1 more source
A high‐capacity polyimide‐linked porous organic polymer (HAT‐PTO) incorporating numerous redox‐active centers is synthesized via a hydrothermal reaction, delivering a high theoretical capacity of 484 mAh g−1. In situ hybridization with carboxyl‐functionalized multiwalled carbon nanotubes enhances conductivity and stability, achieving 397 mAh g−1 at C ...
Arindam Mal +7 more
wiley +1 more source
Analysis of Ni-Rich Cathode Composite Electrode Performance According to the Conductive Additive Distribution for Application in Sulfide All-Solid-State Lithium-Ion Batteries [PDF]
Jae Hong Choi +9 more
openalex +1 more source
Sodium Metal All‐Solid State Batteries (Na‐ASSBs) are enabled by the synthesis of the solid state electrolyte, NASICON (Na1+xZr2SixP3‐xO12), using carbide‐based precursor compounds (ZrC and SiC); resulting in dense, pure, and mechanically improved microstructure.
Callum J. Campbell +10 more
wiley +1 more source

