Results 221 to 230 of about 86,261 (343)
Al/Se co‐substitution in Li6PS5Cl achieves enhanced dry‐air stability and improves Li+ conductivity, retaining 85% of its high Li+ conductivity (4.91 mS cm−1 at 30 °C) after dry‐air exposure (dew point −40 °C for 5 h). The stability enhancement is experimentally validated and underpinned by theoretical analyses indicating suppressed rotation of P[S2SeO]
Juhyoun Park +12 more
wiley +1 more source
Operando microimaging of crystal structure and orientation in all components of all-solid-state-batteries. [PDF]
Jacquet Q +8 more
europepmc +1 more source
Unveiling a Stable Polysulfide Transport Framework in a Fluorine‐Free Li‐S Batteries
This work unveils a lithium thiophosphate reaction pathway activated by trigger P2S5 units, which initiate fast self‐assembly and shift the system away from conventional Li‐S reactions. The reversible Li‐P‐S framework delivers stability, safety, and high energy density, while enabling a distinct solid‐liquid hybrid electrochemical mode that provides a ...
Feng‐Yu Wu +3 more
wiley +1 more source
Magnetic microscopy for operando imaging of battery dynamics. [PDF]
Pollok S +8 more
europepmc +1 more source
Reaction Mechanism, Challenges, and Strategies of High‐Energy‐Density Sodium‐Ion Batteries
Focusing on high‐energy‐density sodium‐ion batteries, this review highlights the advantages offered by conversion‐type cathode materials. The currently studied cathode materials are systematically introduced. By analyzing sulfur, oxygen, and transition metal halides and other conversion‐type cathodes, the key challenges associated with these cathodes ...
Dan Yu +8 more
wiley +1 more source
Metal‐Organic Framework‐Based Supercapacitors: A Comprehensive Review
Overview of Metal‐Organic Frameworks (MOFs) derived electrode materials for supercapacitors. Illustration of redox reactions, conductivity enhancement, and structural stability during charge‐discharge cycling. Emphasis on synergistic effects due to surface area, porosity leading to improved electrochemical performance and energy storage efficiency ...
Swapnajit V. Mulik +5 more
wiley +1 more source
Composite Electrolytes for Non-Lithium-Ion Batteries. [PDF]
Qu Q +5 more
europepmc +1 more source
This study demonstrates a new concept for high‐performance in‐material physical reservoirs (PRs). An intrinsic and cooperative ion–electron state, induced by chemical dedoping in self‐doped poly(3,4‐ethylenedioxythiophene) (S‐PEDOT) nanofilms, enhances the performance of in‐material PRs.
Yuya Ishizaki‐Betchaku +10 more
wiley +1 more source
Multilayer Polyethylene Separator with Enhanced Thermal and Electrochemical Performance for Lithium-Ion Batteries. [PDF]
Liu J +10 more
europepmc +1 more source
A transformative ferroelectric‐polarization strategy is employed to overcome the intrinsic limitations of tungsten bronze (TTB)‐type anode materials in metal‐ion batteries, using Bi3Nb17O47 as a model system. By exploiting the non‐centrosymmetric crystal structure and field‐induced ionic displacements, controlled structural engineering with ...
Xiaoming Lou +10 more
wiley +1 more source

