Results 151 to 160 of about 198,877 (319)

Evaluation of in vitro toxicity of common phytochemicals included in weight loss supplements using 1H NMR spectroscopy

open access: yesFEBS Open Bio, EarlyView.
We investigated the toxicity of 12 active compounds commonly found in herbal weight loss supplements (WLS) using human liver and colon cell models. Epigallocatechin‐3‐gallate was the only compound showing significant toxicity. Metabolic profiling revealed protein degradation, disrupted energy and lipid metabolism suggesting that the inclusion of EGCG ...
Emily C. Davies   +3 more
wiley   +1 more source

KLK7 overexpression promotes an aggressive phenotype and facilitates peritoneal dissemination in colorectal cancer cells

open access: yesFEBS Open Bio, EarlyView.
KLK7, a tissue kallikrein‐related peptidase, is elevated in advanced colorectal cancer and associated with shorter survival. High KLK7 levels in ascites correlate with peritoneal metastasis. In mice, KLK7 overexpression increases metastasis. In vitro, KLK7 enhances cancer cell proliferation, migration, adhesion, and spheroid formation, driving ...
Yosr Z. Haffani   +6 more
wiley   +1 more source

Pioglitazone plus (−)‐epigallocatechin gallate: a novel approach to enhance osteogenic performance in aged bone marrow mesenchymal stem cells

open access: yesFEBS Open Bio, EarlyView.
Aged human bmMSCs are seeded in the scaffold. Osteoblastic induction can slightly increase cell's bone‐forming activity to produce bone‐like tissues, shown as the sporadic xylenol orange‐stained spots (the lower left image). Notably, pioglitazone plus EGCG co‐treatment dramatically increases cell's bone‐forming activity and bone‐like tissue production (
Ching‐Yun Chen   +6 more
wiley   +1 more source

SmoQyDEAC.jl: A differential evolution package for the analytic continuation of imaginary time correlation functions [PDF]

open access: green
James D. Neuhaus   +6 more
openalex   +1 more source

Enzymatic degradation of biopolymers in amorphous and molten states: mechanisms and applications

open access: yesFEBS Open Bio, EarlyView.
This review explains how polymer morphology and thermal state shape enzymatic degradation pathways, comparing amorphous and molten biopolymer structures. By integrating structure–reactivity principles with insights from thermodynamics and enzyme engineering, it highlights mechanisms that enable efficient polymer breakdown.
Anđela Pustak, Aleksandra Maršavelski
wiley   +1 more source

Home - About - Disclaimer - Privacy