Results 201 to 210 of about 146,757 (321)

AI‐Directed 3D Printing of Hierarchical Polyurethane Foams

open access: yesAdvanced Science, EarlyView.
Digitally guided direct ink writing, combined with AI‐generated design, enables the fabrication of hierarchical polyurethane foams with tunable multiscale porosity. This approach produces architected foams featuring interconnected open‐cell networks and tailored mechanical properties, advancing the development of adaptive, high‐performance materials ...
Dhanush Patil   +15 more
wiley   +1 more source

The Microbiota Shapes Central Nervous System Myelination in Early Life

open access: yesAdvanced Science, EarlyView.
Gut microbiota shapes brain development by regulating myelination and glial cell maturation in early life. Using germ‐free (GF) mice and zebrafish, this study reveals sex‐ and age‐dependent effects on myelin growth, integrity, and related gene expression.
Caoimhe M. K. Lynch   +13 more
wiley   +1 more source

Radical‐Mediated, Substrate‐Independent Fabrication of Hybrid Solid–Hydrogel Materials With Tunable Crosslinking: An Initiator‐ and Crosslinker‐Free Approach

open access: yesAdvanced Science, EarlyView.
This work introduces a substrate‐independent, reagent‐free plasma strategy that forms radical‐rich interlayers for covalent hydrogel attachment without initiators or crosslinkers. The long‐lived radicals drive in situ gelation, creating robust, cytocompatible hybrid solid–hydrogel constructs across diverse substrates.
Ghazal Shineh   +14 more
wiley   +1 more source

TOGR3, a Proteasome β4 Subunit, Orchestrates Sugar Homeostasis to Trade Off Growth and Thermotolerance in Rice

open access: yesAdvanced Science, EarlyView.
This study identifies a novel thermoregulatory mechanism in rice: TOGR3 partners with 26S proteasome subunits, including TT1, to drive thermoresponsive ubiquitin–proteasome activity, maintaining sugar homeostasis in stomatal regulation to balance growth and stress resistance.
Biyao Zhang   +9 more
wiley   +1 more source

Crossing the Blood–Brain Barrier with Molecularly Imprinted Polymeric Nanocarriers: An Emerging Frontier in Brain Disease Therapy

open access: yesAdvanced Science, EarlyView.
Molecularly imprinted polymeric nanocarriers (nanoMIPs) offer robust, antibody‐mimetic platforms to overcome the blood‐brain barrier. The article surveys nanoMIP design and ligand‐directed surface engineering that harness receptor‐mediated transcytosis, and highlights therapeutic and diagnostic applications in neurodegeneration, brain tumors and ...
Ranjit De, Shuliang Shi, Kyong‐Tai Kim
wiley   +1 more source

Home - About - Disclaimer - Privacy