Results 141 to 150 of about 103,980 (305)
Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics
The review discusses the challenges of wide and ultrawide bandgap semiconducting oxides as a suitable material platform for photonics. They offer great versatility in terms of tuning microstructure, native defects, doping, anisotropy, and micro‐ and nano‐structuring. The review focuses on their light emission, light‐confinement in optical cavities, and
Ana Cremades +7 more
wiley +1 more source
POM‐Based Water Splitting Catalyst Under Acid Conditions Driven by Its Assembly on Carbon Nanotubes
A newly‐engineered POM‐based electrocatalyst incorporating non‐innocent counter cations exhibits fast kinetics for either the OER or HER under strongly acidic conditions (1 m H2SO4), depending on whether it is assembled on carbon nanotubes (1@CNT) or physically mixed with them (1/CNT). In water‐splitting tests using a two‐electrode setup, these systems
Eugenia P. Quirós‐Díez +8 more
wiley +1 more source
This review presents a focused and integrated perspective on copper‐based catalysts for the selective electrochemical reduction of CO2 to methanol. It elucidates active site dynamics, mechanistic pathways, and structure–activity relationships, while connecting fundamental insights with catalyst design, reactor engineering, and techno‐economic ...
Debabrata Bagchi +7 more
wiley +1 more source
Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes [PDF]
Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes.
Nair, Nanditha +3 more
core +1 more source
High‐Performance Zero‐Gap Glycerol‐Fed Electrolyzer for C3 Chemicals and Hydrogen Production
This work presents a dynamic, self‐regulating operation strategy that enables selective glycerol electrooxidation in the OER‐free regime, co‐producing C3 chemicals and hydrogen at cell voltages below 1.25 V. Voltage‐ and temperature‐resolved analyses define optimal operating conditions, achieving a sustained current density of 500 mA cm−2 at ∼1.21 V ...
Shayan Angizi +11 more
wiley +1 more source
Organic Electrochemical Transistors for Neuromorphic Devices and Applications
Organic electrochemical transistors are emerging as promising platforms for neuromorphic devices that emulate neuronal and synaptic activities and can seamlessly integrate with biological systems. This review focuses on resultant organic artificial neurons, synapses, and integrated devices, with an emphasis on their ability to perform neuromorphic ...
Kexin Xiang +4 more
wiley +1 more source
A colloid‐mediated electroless plating (CMEP) strategy is proposed to fabricate hierarchically porous, amorphous Fe‐doped NiWB electrocatalysts under ambient conditions. The in situ formation of Fe‐W‐O colloidal species guides the formation of robust, porous catalyst layers with excellent mass transfer and durability, sustaining 500 mA cm−2 for 2000 h,
Yu Liao +8 more
wiley +1 more source
A Cu/Ag‐Cu bilayer tandem catalyst is designed for a pyramid‐structured p‐Si photocathode, creating multiple and functionally distinct interfaces tailored to specific reaction steps and intermediate stabilization. This Cu/Ag‐Cu‐decorated p‐Si photocathode exhibits both high photocurrent and good selectivity for photoelectrochemical CO2 reduction to CH4.
Hao Wu +14 more
wiley +1 more source
An Integrated Stainless Steel‐Based Electrode for Durable Direct Natural Seawater Electrolysis
We report an integrated stainless steel‐based electrode featuring Pt atomic clusters anchored on a NiFe‐LDH anticorrosive layer. By regulating interfacial water dynamics to suppress chloride attack, this hierarchical architecture achieves superior durability (over 1000 h) and energy efficiency in direct seawater electrolysis, offering a cost‐effective ...
Jiankun Li +10 more
wiley +1 more source
High‐κ Perovskite‐Like Ternary Niobium Oxide Dielectrics for 2D Electronics
High‐κ dielectrics are vital for scaled electronics. Here, a family of 2D high‐κ perovskite‐like ternary niobium oxides is synthesized via a molten salt‐assisted method. Their integration into FETs and logic gates reveals superior switching characteristics, providing a fresh material platform and new insights for the advancement of high‐performance 2D ...
Biao Zhang +10 more
wiley +1 more source

