Melt Grafting of Geometry‐Tailored Voltage Stabilizers for High‐Performance Polypropylene Insulation
A scalable one‐step melt grafting strategy is developed to enhance the dielectric properties of isotactic polypropylene by covalently incorporating thermally stable aromatic voltage stabilizers. This solvent‐free approach improves volume resistivity and DC breakdown strength through deep trap formation and charge localization, offering a sustainable ...
Nazirul Mubin bin Normansah +9 more
wiley +1 more source
Alkali Ion‐Incorporated HfO2 Dielectrics for Reconfigurable Neuromorphic Computing
This work presents an indium gallium zinc oxide (IGZO) transistor with an alkali cation‐integrated hafnium dioxide (HfO2) dielectric exhibiting synaptic behavior via ion retention. The solution‐based film fabrication strategy overcomes the limitations of atomic layer deposition (ALD) and precursor coating, enabling the control of synaptic retention ...
Seung Yeon Ki +7 more
wiley +1 more source
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source
Modeling the Formation of Gas Bubbles inside the Pores of Reactive Electrochemical Membranes in the Process of the Anodic Oxidation of Organic Compounds. [PDF]
Mareev S +3 more
europepmc +1 more source
Electrochemically Driven Dissipative Growth of Affinity Hydrogels for Bioresponsive Interfaces
Voltage pulses drive the growth and reinforcement of hydrogel films under dissipative conditions. This biocompatible strategy enables efficient integration of affinity ligands into the hydrogel matrix, enhancing the selective capture of growth factors and allowing precise temporal control over their release, making them well‐suited as adaptive ...
Roberto Baretta, Marco Frasconi
wiley +1 more source
A dual‐functional Li2B4O7 coating on carbon fibers is designed to resolve the critical interfacial degradation in sulfide all‐solid‐state batteries. The conformal layer acts as a physical barrier to suppress parasitic reactions while its unique dielectric properties simultaneously facilitate Li+ transport.
Yeonghoon Kim +5 more
wiley +1 more source
On Growth and Morphology of TiO2 Nanotubes on Ti6Al4V by Anodic Oxidation in Ethylene Glycol Electrolyte: Influence of Microstructure and Anodization Parameters. [PDF]
Ribeiro B +5 more
europepmc +1 more source
Rational Device Design and Doping‐Controlled Performance in Fast‐Response π‐Ion Gel Transistors
π‐Ion gel transistors (PIGTs) achieve extraordinary transconductance and stability through device configuration optimization, high‐mobility conjugated polymer selection, and hole scavenger doping. The optimized PIGTs maintain performance on flexible substrates, enabling printed, fast‐response, and wearable electronics.
Masato Kato +10 more
wiley +1 more source
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley +1 more source
Extensive Review of Materials for Next‐Generation Transparent Batteries and Their Design Strategies
Review explores emerging materials and design strategies for transparent batteries, examining electrodes, electrolytes, separators, and device architectures optimized for high electrochemical performance, mechanical flexibility, and optical transparency.
Atul Kumar Mishra +5 more
wiley +1 more source

