Results 181 to 190 of about 89,611 (290)

Theory‐Guided Design of Non‐Precious Single‐Atom Catalyst for Electrocatalytic Chlorine Evolution

open access: yesAdvanced Functional Materials, EarlyView.
To overcome the reliance on noble metals for the chlorine evolution reaction (CER), we designed a non‐precious single‐atom catalyst (SAC), NiN3O–O. It achieves a low overpotential of 75 mV, 95.8% Cl2 selectivity, and outperforms commercial dimensionally stable anodes (DSAs).
Kai Ma   +9 more
wiley   +1 more source

Characterization of Iron Oxide Nanotubes Obtained by Anodic Oxidation for Biomedical Applications-In Vitro Studies. [PDF]

open access: yesMaterials (Basel)
Rangel RCR   +9 more
europepmc   +1 more source

Modulating Interfacial Potential Gradients in Metal−Carbon Catalysts via Phase‐Engineering for Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim   +13 more
wiley   +1 more source

High Entropy Wide‐Bandgap Borates with Broadband Luminescence and Large Nonlinear Optical properties

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy rare‐earth borates exhibit excellent nonlinear optical and broadband luminescence properties arising from multi‐component doping, chemical disorder, increased configurational entropy, and increased lattice and electronic anharmonicity. This formulation enabled us to obtain a large, environmentally stable single crystal with 3X higher laser‐
Saugata Sarker   +14 more
wiley   +1 more source

Hierarchical Nanoporous Sn/SnOx Systems Obtained by Anodic Oxidation of Electrochemically Deposited Sn Nanofoams. [PDF]

open access: yesNanomaterials (Basel), 2020
Gurgul M   +5 more
europepmc   +1 more source

Localized High‐Concentration Electrolyte with Water‐Miscible Diluent Enables Stable Zinc Deposition and Long‐Life Aqueous Zinc Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A diisopropyl ether (DIPE)‐based, localized, high‐concentration electrolyte is developed to stabilize both electrodes in aqueous zinc batteries. By reducing water activity and promoting anion‐rich zinc‐ion solvation, it builds robust interphases at both the cathode and anode, ensuring uniform deposition, suppressed corrosion, and highly reversible ...
Yuxuan Wu   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy