Results 131 to 140 of about 3,533,052 (340)
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang+3 more
wiley +1 more source
The transmission of bacteria through cooking surfaces, the handles of hot plates, and cookware that is not cleaned frequently can pose a problem. In this study, a copper ion-based mixed solution (CBMS) containing only inorganic ions with controlled ...
Takashi Nishimura+4 more
doaj +1 more source
Photonic Nanomaterials for Wearable Health Solutions
This review discusses the fundamentals and applications of photonic nanomaterials in wearable health technologies. It covers light‐matter interactions, synthesis, and functionalization strategies, device assembly, and sensing capabilities. Applications include skin patches and contact lenses for diagnostics and therapy. Future perspectives emphasize AI‐
Taewoong Park+3 more
wiley +1 more source
Carbon‐based piezoelectric materials are systematically categorized based on their structural and functional properties. The mechanisms of stress‐induced charge transfer are elucidated, and their applications are explored across three key domains: piezoelectric catalysis for energy conversion and environmental remediation, piezoelectric biomedical ...
Mude Zhu+3 more
wiley +1 more source
This review systematically examines the nanomechanical mechanisms of mussel‐inspired molecular interactions, primarily investigated by direct force measurement techniques such as surface forces apparatus and atomic force microscopy. The macroscopic adhesive and self‐healing performances of mussel‐inspired functional materials, including coacervates ...
Pan Huang, Hongjian Zhang, Hongbo Zeng
wiley +1 more source
Harnessing Photo‐Energy Conversion in Nanomaterials for Precision Theranostics
Harnessing photo‐energy conversion in nanomaterials enables precision theranostics through light‐driven mechanisms such as photoluminescence, photothermal, photoelectric, photoacoustic, photo‐triggered surface‐enhanced Raman scattering (SERS), and photodynamic processes. This review explores six fundamental principles of photo‐energy conversion, recent
Jingyu Shi+4 more
wiley +1 more source
Designing the Next Generation of Biomaterials through Nanoengineering
Nanoengineering enables precise control over biomaterial interactions with living systems by tuning surface energy, defects, porosity, and crystallinity. This review highlights how these nanoscale design parameters drive advances in regenerative medicine, drug delivery, bioprinting, biosensing, and bioimaging, while outlining key translational ...
Ryan Davis Jr.+3 more
wiley +1 more source
Aramid Nanofiber Aerogels: Versatile High Complexity Components for Multifunctional Composites
Different forms of aramid nanofibers (ANFs) and especially aerogels from them, offer a sustainable route to high‐performance biomimetic nanocomposites. Due to the cartilage‐like architecture, ANF‐based materials enable breakthroughs in energy, electromagnetic, biomedical, and water purification technologies.
Mingqiang Wang+9 more
wiley +1 more source
Biomimetic 3D‐printed hydrogel bioadhesives (PTLAs) are designed to address the limitations of existing bioadhesives, offering solutions for challenging tissue adhesion and enhanced healthcare. These PTLAs feature robust wet/underwater tissue adhesion/sealing, superior freeze/pressure and infection resistance, and adaptive self‐healing/gelling capacity,
Qi Wu+4 more
wiley +1 more source
A universal, reagent‐free strategy is presented for covalently attaching hydrogels to diverse polymeric substrates through reactive oxygen species. The scalable, linker‐free approach enables robust adhesion and broad material compatibility, advancing the fabrication of hybrid solid–hydrogel systems for next‐generation biomedical devices and bioprinting
Masoud Zhianmanesh+8 more
wiley +1 more source