Results 161 to 170 of about 1,350,029 (335)

Biologically Active Implants Prevent Mortality in a Mouse Sepsis Model

open access: yesAdvanced Healthcare Materials, EarlyView.
A modular, triple‐action titanium implant is developed to prevent implant‐associated infections by repelling bacteria, killing pathogens, and enhancing tissue integration. Coatings with phage cocktails targeting P. aeruginosa and S. aureus show significant bacterial reduction and improved survival in a mouse sepsis model.
Martin Stark   +9 more
wiley   +1 more source

Studies on the Antimicrobial Action of Sorbic Acid

open access: bronze, 1955
Masao Nomoto   +2 more
openalex   +2 more sources

Plant Products as Antimicrobial Agents

open access: yesClinical Microbiology Reviews, 1999
M. M. Cowan
semanticscholar   +1 more source

ROS‐Scavenging Multifunctional Microneedle Patch Facilitating Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
A reactive oxygen species (ROS) scavenging and immunomodulatory microneedle patch based on hyaluronic acid methacrylate (HaMA) and Flightless I (Flii)‐siRNA‐laden arginine functionalized poly (β‐amino ester)/alginate particles is developed for chronic wound healing applications.
Mahshid Kharaziha   +4 more
wiley   +1 more source

Advanced Nanoparticle Therapeutics for Targeting Neutrophils in Inflammatory Diseases

open access: yesAdvanced Healthcare Materials, EarlyView.
This review highlights recent advances in nanoparticle‐based strategies to modulate neutrophil activity in inflammatory diseases. By targeting inflammatory neutrophils, NET formation, and neutrophil apoptosis or recruitment, these approaches aim to improve therapeutic precision.
Min Ji Byun   +9 more
wiley   +1 more source

Novel 3D‐Printed Biophotonic Scaffold Displaying Luminescence under Near‐Infrared Light for Photopharmacological Activation and Biological Signaling Compound Release

open access: yesAdvanced Healthcare Materials, EarlyView.
Despite significant efforts in developing novel biomaterials to regenerate tissue, only a few of them have successfully reached clinical use. It has become clear that the next generation of biomaterials must be multifunctional. Smart biomaterials can respond to environmental or external stimuli, interact in a spatial‐temporal manner, and trigger ...
Sonya Ghanavati   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy