Results 181 to 190 of about 72,882 (300)

Design of High‐Energy Anode for All‐Solid‐State Lithium Batteries–A Model with Borohydride‐Based Electrolytes

open access: yesAdvanced Materials Interfaces, EarlyView.
This study proposes a function‐sharing anode design to enable nonmetallic lithium insertion while maintaining intimate interfacial contact with the solid‐state electrolyte. A combination of lithium‐compatible and conformable borohydrides, highly conformable indium metal, less‐graphitized acetylene black, and a layer of highly graphitized massive ...
Keita Kurigami   +3 more
wiley   +1 more source

Rational Electrolyte Structure Engineering for Highly Reversible Zinc Metal Anode in Aqueous Batteries. [PDF]

open access: yesNanomicro Lett
Zhuang Y   +10 more
europepmc   +1 more source

Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. [PDF]

open access: yesNat Commun, 2022
Dai C   +14 more
europepmc   +1 more source

Light‐Controlled Exposure of Cancer Cells to Reactive Oxygen Species Using Organic Semiconductor Thin Films

open access: yesAdvanced Materials Interfaces, EarlyView.
Spin‐coated films of the conjugated polymer F8T2 (poly (9,9‐dioctylfluorene‐alt‐bithiophene)) generate superoxide at the film‐medium interface, enabling precise delivery of reactive oxygen species (ROS) as visible‐light “ROS patches.” Coated surfaces drive rapid, localised cytotoxicity in MCF7 cancer monolayers under white light, providing a reagent ...
Joe Kaye   +8 more
wiley   +1 more source

Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. [PDF]

open access: yesNat Commun, 2022
Jin S   +10 more
europepmc   +1 more source

Powder‐to‐Film Conversion of Nickel Single‐Atom Catalysts into Binder‐Free and Resistant Electrodes

open access: yesAdvanced Materials Interfaces, EarlyView.
A reproducible strategy is reported for fabricating standalone thin‐film electrodes composed of CNx‐supported Ni single‐atom catalysts. The resulting binder‐free electrodes exhibit robust stability, enhanced charge transfer, and superior electrochemical performance, offering scalable opportunities for applications in electrochemistry. ABSTRACT Although
Milla Vigliengo   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy