Results 161 to 170 of about 23,681 (258)

Electrochemical Nitrate Reduction Reaction to Ammonia at Industrial‐Level Current Densities

open access: yesAdvanced Science, EarlyView.
This review starts from the mechanism and theoretical basis of electrochemical nitrate reduction reaction (NO3−RR), and systematically summarizes and discusses the design strategies of industrial‐level current density catalysts. In addition, the progress of industrial‐level NO3−RR‐based electrolyzers, including flow reactor and membrane electrode ...
Zhijie Cui   +4 more
wiley   +1 more source

Atomic Precision CoCu Heterodimers with Pseudo‐D3h Symmetry Enable Tandem Nitrate Reduction

open access: yesAdvanced Science, EarlyView.
The Co─Cu heterodimer anchored on nitrogen‐doped graphene oxide substrate facilitates electrochemical nitrate reduction in alkaline medium. Co site promotes water dissociation to supply a proton, while Cu sites enhance nitrate adsorption and activation.
Akash Prabhu Sundar Rajan   +5 more
wiley   +1 more source

Transition Metal Compounds for Aqueous Ammonium‐Ion Batteries: Storage Mechanisms and Electrode Design

open access: yesAdvanced Science, EarlyView.
Aqueous ammonium‐ion batteries leverage hydrogen‐bond‐mediated NH4+ storage in tunable transition metal compounds. Despite progress in Mn‐, V‐, Mo‐, and W‐based compounds, 2D LDHs, and MXenes, challenges like structural instability and slow kinetics persist. Future advances require robust host design, mechanistic understanding via operando studies, and
Can Li   +6 more
wiley   +1 more source

Recent Progress on the Research of 3D Printing in Aqueous Zinc-Ion Batteries. [PDF]

open access: yesPolymers (Basel)
Liu Y   +6 more
europepmc   +1 more source

Empowering Carbon Fibers With Ti3C2Tx MXene: A Paradigm Shift Toward Integrated Structure‐Function Composites

open access: yesAdvanced Science, EarlyView.
This review comprehensively outlines how Ti3C2Tx MXene transforms carbon fiber from a structural component into a multifunctional platform. We systematically detail cutting‐edge modification strategies and showcase exceptional performance in EMI shielding, energy storage, smart sensing, and beyond.
Hongshuo Cao   +6 more
wiley   +1 more source

Tuning Desolvation Kinetics with Perovskite‐Type Ion‐Conductive Modulators toward Low‐Temperature Zn Metal Batteries

open access: yesAdvanced Science, EarlyView.
A strategy of constructing perovskite‐type ion‐conductive interphase modulation layer is proposed to break down ion‐dipole interactions of [Zn(H2O)x]2+ to promote Zn2+ desolvation and diffusion kinetics against dendrite growth and active water‐induced hydrogen evolution reactions.
Wenbin Wang   +14 more
wiley   +1 more source

Theaflavins as Electrolyte Additives for Inhibiting Zinc Dendrites and Hydrogen Evolution in Aqueous Zinc-Ion Batteries. [PDF]

open access: yesInt J Mol Sci
Zhang X   +10 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy