Results 61 to 70 of about 23,681 (258)
NH4V4O10 based ammonium vanadium bronze has been widely investigated as a cathode material for lithium-ion batteries. A V4O10 group based H6V4O10 might be a potential anode material due to its high hydrogen content and similar composition.
Hailong Fei
doaj +1 more source
Factors affecting the performance of the Zn-Ce redox flow battery [PDF]
The Hull Cell was used to investigate the impact of current density j on the morphology and uniformity of zinc electrodeposited from a 2.5 mol dm−3 Zn2+ solution in 1.5 mol dm−3 methanesulfonic acid at 40◦C onto carbon-composite surfaces.
Berlouis, Leonard +4 more
core +1 more source
Bio‐Inspired Molecular Events in Poly(Ionic Liquids)
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley +1 more source
Recent Progress on Zinc-Ion Rechargeable Batteries
The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems, due to the environmental pollution and energy ...
Wangwang Xu, Ying Wang
doaj +1 more source
Conductive Bonding and System Architectures for High‐Performance Flexible Electronics
This review outlines bonding technologies and structural design strategies that support high‐performance flexible and stretchable electronics. Bonding approaches such as surface‐activated bonding and anisotropic conductive films, together with system‐level architectures including buffer layers and island‐bridge structures, possess distinct mechanical ...
Kazuma Nakajima, Kenjiro Fukuda
wiley +1 more source
Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries
Given good safety, low cost, and environmental friendliness, rechargeable aqueous zinc-ion batteries (ZIBs) are considered as a more feasible solution for grid-scale applications than Li-ion batteries.
L. Wang, J. Zheng
doaj +1 more source
Novel Functional Materials via 3D Printing by Vat Photopolymerization
This Perspective systematically analyzes strategies for incorporating functionalities into 3D‐printed materials via Vat Photopolymerization (VP). It explores the spectrum of achievable functionalities in recently reported novel materials—such as conductive, energy‐storing, biodegradable, stimuli‐responsive, self‐healing, shape‐memory, biomaterials, and
Sergey S. Nechausov +3 more
wiley +1 more source
This review maps how MOFs can manage hazardous gases by combining adsorption, neutralization, and reutilization, enabling sustainable air‐pollution control. Covering chemical warfare agent simulants, SO2, NOx, NH3, H2S, and volatile organic compounds, it highlights structure‐guided strategies that boost selectivity, water tolerance, and cycling ...
Yuanmeng Tian +8 more
wiley +1 more source
Flexible and stretchable power sources for wearable electronics. [PDF]
Flexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while ...
Arias, Ana Claudia +8 more
core +2 more sources
We present a fully printed aqueous zinc‐ion microbattery (ZnIB) enabled by graphene‐decorated zinc anode and printed MnO@NC cathode using sustainable aqueous‐based ink formulations. The printed 3D electrodes ensure uniform zinc deposition, low overpotential, and long‐term stability.
Nagaraju Goli +11 more
wiley +1 more source

