Results 41 to 50 of about 78,963 (288)
Objective Foot orthoses are thought to improve pain by potentially modifying internal mechanical forces. To test this, we explored whether foot orthoses can modify patterns of bone marrow lesions (BMLs) in people with midfoot pain. Methods Forty‐two people were recruited with midfoot pain, and magnetic resonance imaging–confirmed midfoot BMLs ...
Jill Halstead +4 more
wiley +1 more source
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz +3 more
wiley +1 more source
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva +9 more
wiley +1 more source
Arterial walls stiffen with age. The most consistent and well-reported changes are luminal enlargement with wall thickening and a reduction of elastic properties at the level of large elastic arteries. Longstanding arterial pulsation in the central artery causes elastin fiber fatigue and fracture.
Hae-Young, Lee, Byung-Hee, Oh
openaire +3 more sources
A 3D disease model is developed using customized hyaluronic‐acid‐based hydrogels supplemented with extracellular matrix (ECM) proteins resembling brain ECM properties. Neurons, astrocytes, and tumor cells are used to mimic the native brain surrounding.
Esra Türker +16 more
wiley +1 more source
Shape‐Morphing Nanoengineered Hydrogel Ribbons as Hemostats
This study introduces a self‐assembling, shape‐morphing nanoengineered hydrogel ribbon system that rapidly forms porous aggregates in situ for efficient hemostasis in trauma and surgical applications. Abstract Rapid and effective hemorrhage control remains a major challenge in trauma and surgical care, particularly for complex or noncompressible wounds.
Ryan Davis Jr +9 more
wiley +1 more source
Background The association between the triglyceride-glucose (TyG) index and arterial stiffness in individuals with normoglycaemia remains unclear. We aimed to evaluate the relationship between the TyG index and arterial stiffness in Japanese individuals ...
Yuying Cai +9 more
doaj +1 more source
P5.19 STIFF ARTERIES, STIFF HEARTS?
Objectives: To examine the relationship between arterial stiffness and diastolic function in healthy normotensive subjects. Methods: For this study, 43 male (40±10 years) and 64 female (40±9 years) subjects were recruited. All were lifelong non-smokers, normolipidaemic, normoglycaemic and had normal 24-hour blood pressure responses (SBP\DBP <140\90).
O. Mac Ananey, V. Maher
openaire +2 more sources
Adaptive 4D‐Printed Vascular Stents With Low‐Temperature‐Activated and Intelligent Deployment
Microarchitected coronary artery stents were fabricated using a polycaprolactone (PCL)‐based shape memory polymer (SMP) composite via projection micro‐stereolithography (PµSL) 4D printing. By incorporating diethyl phthalate (DEP) as a plasticizer, the thermal transition temperature (Ttran) was modulated to about 37°C, enabling rapid and autonomous ...
Yannan Li +12 more
wiley +1 more source
Arterial stiffness is a robust predictor of cardiovascular disease and mortality. As such, there is substantial interest in uncovering its causal factors for the development of targeted treatments to regulate arterial stiffness. The elastic protein titin
Chaoqun Zhu +3 more
doaj +1 more source

