Results 161 to 170 of about 1,902,998 (334)

Understanding Functional Materials at School

open access: yesAdvanced Functional Materials, EarlyView.
This review outlines strategies for effectively teaching nanoscience in schools, focusing on challenges such as scale comprehension and curriculum integration. Emphasizing inquiry‐based learning and chemistry core concepts, it showcases hands‐on activities, digital tools, and interdisciplinary approaches.
Johannes Claußnitzer, Jürgen Paul
wiley   +1 more source

iEat: automatic wearable dietary monitoring with bio-impedance sensing

open access: yesScientific Reports
Diet is an inseparable part of good health, from maintaining a healthy lifestyle for the general population to supporting the treatment of patients suffering from specific diseases.
Mengxi Liu   +4 more
doaj   +1 more source

Biosupercapacitors for Human‐Powered Electronics

open access: yesAdvanced Functional Materials, EarlyView.
Biosupercapacitors are emerging as biocompatible and integrative energy systems for next‐generation bioelectronics, offering rapid charge–discharge performance and mechanical adaptability. This review systematically categorizes their applications from external to organ‐level systems and highlights their multifunctional roles in sensing, actuation, and ...
Suhyeon Kim   +7 more
wiley   +1 more source

Anti‐Swelling Textile Power Generator with 1D Nanoscale Channel Alignment in Nanofiber/Graphene Hybrid Yarns

open access: yesAdvanced Functional Materials, EarlyView.
A nanofiber/graphene hybrid yarn with 1D oriented nanoscale channel is constructed via bath electrospinning followed by a functionalization process, yielding exceptional anti‐swelling and weaving abilities. When configured into a waterproof fabric through series‐parallel connection of 62‐cm yarns, an output power of 31.96 µW is achieved, which could ...
Yuman Zhou   +6 more
wiley   +1 more source

Selective and Precise Editing of Digital Polymers Through Parallel or Series Toehold‐Mediated Strand Displacement

open access: yesAdvanced Functional Materials, EarlyView.
A sequence‐encoded supramolecular construct containing two accessible toeholds is developed herein for enabling multiple editing operations. By introducing specific input strands, it is possible to selectively erase or rewrite digital content through parallel or series toehold‐mediated strand displacement (PTMSD or STMSD).
Jakub Ossowski   +3 more
wiley   +1 more source

Photoswitching Conduction in Framework Materials

open access: yesAdvanced Functional Materials, EarlyView.
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez   +4 more
wiley   +1 more source

Toward the 3rd Generation of Smart Farming: Materials, Devices, and Systems for E‐Plant Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the latest developments in e‐plant technologies, which are revolutionizing smart farming by enabling real‐time monitoring of plant and environmental conditions. It covers the design, applications, and systems of e‐plant devices, detailing how they integrate data analytics to optimize agricultural practices, enhance crop yields, and
Daegun Kim   +5 more
wiley   +1 more source

Photoresponsive Gas‐Permeable Membranes: Fundamentals, Innovations, and Prospects

open access: yesAdvanced Functional Materials, EarlyView.
Photoresponsive gas‐permeable membranes can be potentially used for smart packing, carbon capture, hydrogen purification, and optical gas valves due to their remote and non‐contact activation, precise spatial and temporal control, and reversible switching capabilities.
Zhuan Wang   +6 more
wiley   +1 more source

Artificial intelligence in breast imaging: potentials and challenges

open access: hybrid, 2023
Jia-wei Li   +6 more
openalex   +1 more source

Label‐Free and Low‐Power Driven Cancer Biomarker Detection Enabled by 2D Hexagonal Titanium Oxide

open access: yesAdvanced Functional Materials, EarlyView.
A low‐power driven FET biosensor based on 2D hexagonal TiO2 detects the cancer biomarker carcinoembryonic antigen with high sensitivity, a low detection limit of 0.22 pg mL−1, and excellent selectivity. Leveraging the unique electronic properties of the material, this work demonstrates strong potential for integration into miniature and portable cancer
Yange Luan   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy