Bright and Dark Breathers on an Elliptic Wave in the Defocusing mKdV Equation
ABSTRACT Breathers on an elliptic wave background consist of nonlinear superpositions of a soliton and a periodic wave, both traveling with different wave speeds and interacting periodically in the space‐time. For the defocusing modified Korteweg–de Vries equation, the construction of general breathers has been an open problem since the elliptic wave ...
Dmitry E. Pelinovsky, Rudi Weikard
wiley +1 more source
A theorem concerning Fourier transforms: A survey
Abstract In this note, we highlight the impact of the paper G. H. Hardy, A theorem concerning Fourier transforms, J. Lond. Math. Soc. (1) 8 (1933), 227–231 in the community of harmonic analysis in the last 90 years, reviewing, on one hand, the direct generalizations of the main results and, on the other hand, the different connections to related areas ...
Aingeru Fernández‐Bertolin, Luis Vega
wiley +1 more source
Beyond the Hodge theorem: Curl and asymmetric pseudodifferential projections
Abstract We develop a new approach to the study of spectral asymmetry. Working with the operator curl:=∗d$\operatorname{curl}:={*}\mathrm{d}$ on a connected oriented closed Riemannian 3‐manifold, we construct, by means of microlocal analysis, the asymmetry operator — a scalar pseudodifferential operator of order −3$-3$.
Matteo Capoferri, Dmitri Vassiliev
wiley +1 more source
Vladimirov–Pearson operators on ζ$\zeta$‐regular ultrametric Cantor sets
Abstract A new operator for certain types of ultrametric Cantor sets is constructed using the measure coming from the spectral triple associated with the Cantor set, as well as its zeta function. Under certain mild conditions on that measure, it is shown that it is an integral operator similar to the Vladimirov–Taibleson operator on the p$p$‐adic ...
Patrick Erik Bradley
wiley +1 more source
Asymptotic properties of eigenvalues and eigenfunctions of a Sturm-Liouville problem with discontinuous weight function [PDF]
11 ...
openaire +4 more sources
Euclidean algorithms are Gaussian over imaginary quadratic fields
Abstract We prove that the distribution of the number of steps of the Euclidean algorithm of rationals in imaginary quadratic fields with denominators bounded by N$N$ is asymptotically Gaussian as N$N$ goes to infinity, extending a result by Baladi and Vallée for the real case.
Dohyeong Kim, Jungwon Lee, Seonhee Lim
wiley +1 more source
Fractional Q$Q$‐curvature on the sphere and optimal partitions
Abstract We study an optimal partition problem on the sphere, where the cost functional is associated with the fractional Q$Q$‐curvature in terms of the conformal fractional Laplacian on the sphere. By leveraging symmetries, we prove the existence of a symmetric minimal partition through a variational approach. A key ingredient in our analysis is a new
Héctor A. Chang‐Lara +2 more
wiley +1 more source
Topological chiral‐gain in a Berry dipole material
Abstract Recent studies have shown that low‐symmetry conductors under static electric bias offer a pathway to realize chiral gain, where the non‐Hermitian optical response of the material is controlled by the spin angular momentum of the wave. In this work, we uncover the topological nature of chiral gain and demonstrate how a static electric bias ...
Filipa R. Prudêncio +1 more
wiley +1 more source
Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields [PDF]
We consider the Schrödinger operator with magnetic field, H = ( 1 i ∇ − a ⇀ ( x ) ) 2 + V ( x ) in R
openaire +2 more sources
Wave asymptotics for waveguides and manifolds with infinite cylindrical ends
We describe wave decay rates associated to embedded resonances and spectral thresholds for waveguides and manifolds with infinite cylindrical ends. We show that if the cut-off resolvent is polynomially bounded at high energies, as is the case in certain ...
Christiansen, T. J., Datchev, K.
core

