Results 171 to 180 of about 1,625,523 (336)

Porous Decellularized Nerve Grafts Facilitate Recellularization and Nerve Regeneration in a Rat Model of Critical Long‐Gap Peripheral Nerve Injury

open access: yesAdvanced Healthcare Materials, EarlyView.
A decellularized nerve graft (DNG) is modified to generate a porous DNG (PDNG). The PDNG is used to repair a 30‐mm peripheral nerve injury (PNI) defect, and is compared with isograft, serving as the standard, and DNG, a widely used alternative. The result shows that PDNG facilitated nerve regeneration in long‐gap PNI, evidenced by better‐aligned axonal
Olawale Alimi Alimi   +10 more
wiley   +1 more source

Mechanical Reinforced and Self‐healing Hydrogels: Bioprinted Biomimetic Methacrylated Collagen Peptide‐Xanthan Gum Constructs for Ligament Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Readily UV‐curing and self‐healing methacrylated collagen peptide (COPMA) hydrogels are developed with tunable mechanical properties. As the interpenetrating network between COPMA and xanthan gum (XG), COPMA‐XG bioinks show improved mechanical properties, printability, and stability, compared to COPMA or XG.
Hongjuan Weng   +6 more
wiley   +1 more source

Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems

open access: yesAdvanced Materials, EarlyView.
This article summarizes significant technological advancements in materials, photonic devices, and bio‐interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on‐skin health monitoring.
Seunghyeb Ban   +5 more
wiley   +1 more source

From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials

open access: yesAdvanced Materials, EarlyView.
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy