Results 111 to 120 of about 1,077,411 (327)

Rationally Designed Carbon Nanomaterials for Electrically Driven Solid‐State Hydrogen Storage

open access: yesAdvanced Functional Materials, EarlyView.
A bottom‐up design principle integrating atomic‐level and nanoscale structural engineering is developed to guide the rational design of electrically tunable, solid‐state hydrogen storage materials that enable non‐dissociative chemisorption under applied electric fields.
Yong Gao   +30 more
wiley   +1 more source

Battery energy storage systems for the electricity grid: UK research facilities

open access: yes, 2016
Grid-connected battery energy storage systems with fast acting control are a key technology for improving power network stability and increasing the penetration of renewable generation.
T. Feehally   +6 more
semanticscholar   +1 more source

Prospects of Electric Field Control in Perpendicular Magnetic Tunnel Junctions and Emerging 2D Spintronics for Ultralow Energy Memory and Logic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp   +7 more
wiley   +1 more source

Sonication‐Assisted Palladium Nanogaps in a Capacitive Structure: A Tunable and Reliable Solution for Sensitive Hydrogen Monitoring

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a capacitive hydrogen sensor with a simple structure and process. Sonication‐induced Pd nanogaps modulate the effective electrode area in response to hydrogen concentration, resulting in capacitance changes within a range predefined by physical parameters.
Sang‐kil Lee   +9 more
wiley   +1 more source

Transducer Materials Mediated Deep Brain Stimulation in Neurological Disorders

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses advanced transducer materials for improving deep brain stimulation (DBS) in neurological disorders. These materials respond to light, ultrasound, or magnetic fields, enabling precise, less invasive neuromodulation. Their stimulus‐responsive properties enhance neural control and adaptive therapy, paving the way for next‐generation ...
Di Zhao   +5 more
wiley   +1 more source

Fluorinated Interphase Enabled by Lithium Salt‐Driven Electrical Double‐Layer Modulation for Advanced Zinc Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a highly soluble, reduction‐active lithium salt into conventional zinc battery electrolytes, enhancing the solvation structure and electric double layer. These modifications significantly improve the reversibility of the zinc anode and mitigate cathode material dissolution, presenting a novel approach to enhancing the performance ...
Ziwei Zhao   +5 more
wiley   +1 more source

Efficiency of Battery Systems from the Point of View of Economic Return

open access: yesProduction Engineering Archives
Battery energy storage systems (BESS) are becoming increasingly important and their number of applications in energy systems is constantly increasing. Although batteries cannot solve the problem of electricity storage in the long term, BESS systems have ...
Garbier Milan, Čorejová Tatiana
doaj   +1 more source

Bimetallic Nanoparticles as Cocatalysts for Photocatalytic Hydrogen Production

open access: yesAdvanced Functional Materials, EarlyView.
Recent developments have introduced bimetallic nanoparticles as effective cocatalysts for photocatalytic systems. This review explores the rapidly expanding research on bimetallic cocatalysts for photocatalytic production of hydrogen, emphasizing the creation of carrier‐selective contacts, localized surface plasmon resonance effects, methodologies for ...
Yufen Chen   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy