Results 251 to 260 of about 1,820,384 (367)
Modeling frameworks in nutritional epidemiology matter: comparing isotemporal and time-lagged Bayesian and frequentist approaches of carbohydrate intake and adiposity. [PDF]
Titensor S +8 more
europepmc +1 more source
This study introduces an affordable machine learning platform for simultaneous dengue and zika detection using fluorine‐doped tin oxide thin films modified with gold nanoparticles and DNA aptamers. Designed for low‐cost, hardware‐limited devices (< $25), the model achieves 95.3% accuracy and uses only 9.4 kB of RAM, demonstrating viability for resource‐
Marina Ribeiro Batistuti Sawazaki +3 more
wiley +1 more source
Anti-noise variational sparse Bayesian estimation ghost imaging based on 3Level factor graph. [PDF]
Xiang S +9 more
europepmc +1 more source
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir +4 more
wiley +1 more source
Extracting Weight of Evidence from p-Value via Bayesian Approach to Activation Likelihood Estimation Meta-Analysis. [PDF]
Costa T +4 more
europepmc +1 more source
The Necessity of Dynamic Workflow Managers for Advancing Self‐Driving Labs and Optimizers
We assess the maturity and integration readiness of key methodologies for Materials Acceleration Platforms, highlighting the need for dynamic workflow managers. Demonstrating this, we integrate PerQueue into a color‐mixing robot, showing how flexible orchestration improves coordination and optimization.
Simon K. Steensen +6 more
wiley +1 more source
Sparse Bayesian multidimensional scaling(s). [PDF]
Sheth A, Smith A, Holbrook AJ.
europepmc +1 more source
A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source

