The Necessity of Dynamic Workflow Managers for Advancing Self‐Driving Labs and Optimizers
We assess the maturity and integration readiness of key methodologies for Materials Acceleration Platforms, highlighting the need for dynamic workflow managers. Demonstrating this, we integrate PerQueue into a color‐mixing robot, showing how flexible orchestration improves coordination and optimization.
Simon K. Steensen +6 more
wiley +1 more source
Simplifying fractional polynomials in Bayesian network meta-analysis via variable powers. [PDF]
Verhoek A +4 more
europepmc +1 more source
A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source
Comparative evaluation of score criteria for dynamic Bayesian Network structure learning. [PDF]
Yaman A, Cengiz MA.
europepmc +1 more source
Classification of patients with lithium-treated bipolar disorder based on gene expression: Dirichlet Bayesian network model [PDF]
Nader Salari +4 more
openalex +1 more source
Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source
Comparison of multiple doses of corticosteroids in Kawasaki disease: a Bayesian network analysis. [PDF]
Li X +11 more
europepmc +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source

