Results 131 to 140 of about 234,090 (282)
This study introduces an affordable machine learning platform for simultaneous dengue and zika detection using fluorine‐doped tin oxide thin films modified with gold nanoparticles and DNA aptamers. Designed for low‐cost, hardware‐limited devices (< $25), the model achieves 95.3% accuracy and uses only 9.4 kB of RAM, demonstrating viability for resource‐
Marina Ribeiro Batistuti Sawazaki +3 more
wiley +1 more source
Accelerating Stellar Photometric Distance Estimates with Neural Networks
Building on the Bayesian approach to estimating stellar distances from broadband photometry, we show that the computation can be accelerated by about an order of magnitude by using neural networks. Focusing on the case of the ugrizy filter complement for
Karlo Mrakovčić +2 more
doaj +1 more source
Bayesian neural network with pretrained protein embedding enhances prediction accuracy of drug-protein interaction. [PDF]
Kim Q, Ko JH, Kim S, Park N, Jhe W.
europepmc +1 more source
Bayesian Neural Networks and Dimensionality Reduction
29 pages, 13 ...
Sen, Deborshee +2 more
openaire +3 more sources
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir +4 more
wiley +1 more source
The Necessity of Dynamic Workflow Managers for Advancing Self‐Driving Labs and Optimizers
We assess the maturity and integration readiness of key methodologies for Materials Acceleration Platforms, highlighting the need for dynamic workflow managers. Demonstrating this, we integrate PerQueue into a color‐mixing robot, showing how flexible orchestration improves coordination and optimization.
Simon K. Steensen +6 more
wiley +1 more source
A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source
We constructed an early prediction model for postoperative pulmonary complications after thoracoscopic surgery using machine learning and deep learning algorithms.
Cheng-Mao Zhou +4 more
doaj +1 more source
The recently proposed Chemical Reaction Neural Network (CRNN) discovers chemical reaction pathways from time resolved species concentration data in a deterministic manner. Since the weights and biases of a CRNN are physically interpretable, the CRNN acts
Emily Nieves +3 more
doaj +1 more source
Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley +1 more source

