Results 81 to 90 of about 234,090 (282)
3D Printing of Soft Robotic Systems: Advances in Fabrication Strategies and Future Trends
Collectively, this review systematically examines 3D‐printed soft robotics, encompassing material selections, function integration, and manufacturing methodologies. Meanwhile, fabrication strategies are analyzed in order of increasing complexity, highlighting persistent challenges with proposed solutions.
Changjiang Liu +5 more
wiley +1 more source
Robots can learn manipulation tasks from human demonstrations. This work proposes a versatile method to identify the physical interactions that occur in a demonstration, such as sequences of different contacts and interactions with mechanical constraints.
Alex Harm Gert‐Jan Overbeek +3 more
wiley +1 more source
Stochastic Bayesian Neural Networks
Bayesian neural networks perform variational inference over the weights however calculation of the posterior distribution remains a challenge. Our work builds on variational inference techniques for bayesian neural networks using the original Evidence Lower Bound.
openaire +2 more sources
Probabilistic Safety for Bayesian Neural Networks
We study probabilistic safety for BayesianNeural Networks (BNNs) under adversarial in-put perturbations. Given a compact set of input points,T⊆Rm, we study the probability w.r.t. the BNN posterior that all the pointsinTare mapped to the same region S in theoutput space.
Wicker, M +3 more
openaire +3 more sources
A miniaturized soft optical sensor that uses thin film color tuning enables real‐time 3D shape‐sensing from a single red–green–blue (RGB) signal. When integrated into a soft robot, it enables closed‐loop control and autonomous navigation in a phantom lung environment without the need for onboard electronics, achieving sub‐millimeter accuracy through ...
Frank Juliá Wise +6 more
wiley +1 more source
Continual Learning for Multimodal Data Fusion of a Soft Gripper
Models trained on a single data modality often struggle to generalize when exposed to a different modality. This work introduces a continual learning algorithm capable of incrementally learning different data modalities by leveraging both class‐incremental and domain‐incremental learning scenarios in an artificial environment where labeled data is ...
Nilay Kushawaha, Egidio Falotico
wiley +1 more source
Flat Seeking Bayesian Neural Networks
Bayesian Neural Networks (BNNs) provide a probabilistic interpretation for deep learning models by imposing a prior distribution over model parameters and inferring a posterior distribution based on observed data. The model sampled from the posterior distribution can be used for providing ensemble predictions and quantifying prediction uncertainty.
Nguyen, Van-Anh +5 more
openaire +2 more sources
Compliant Pneumatic Feet with Real‐Time Stiffness Adaptation for Humanoid Locomotion
A compliant pneumatic foot with real‐time variable stiffness enables humanoid robots to adapt to changing terrains. Using onboard vision and pressure control, the foot modulates stiffness within each gait cycle, reducing impact forces and improving balance. The design, cast in soft silicone with embedded air chambers and Kevlar wrapping, offers durable,
Irene Frizza +3 more
wiley +1 more source
BAYESIAN NEURAL NETWORK RAINFALL MODELLING: A CASE STUDY IN EAST JAVA
Rainfall is an important parameter in meteorology and hydrology, and it measures the amount of rain that falls from the atmosphere to the ground surface in liquid form.
Suci Astutik +7 more
doaj +1 more source
CellPolaris decodes how transcription factors guide cell fate by building gene regulatory networks from transcriptomic data using transfer learning. It generates tissue‐ and cell‐type‐specific networks, identifies master regulators in cell state transitions, and simulates TF perturbations in developmental processes.
Guihai Feng +27 more
wiley +1 more source

