Results 201 to 210 of about 4,909,083 (351)

Deep Learning‐Assisted Design of Mechanical Metamaterials

open access: yesAdvanced Intelligent Discovery, EarlyView.
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong   +5 more
wiley   +1 more source

Predicting the Losses of Marine Aquaculture Equipment Due to Disasters Along the Fujian Coastline Using a Bayesian-Optimized SVR Model

open access: yesHaiyang Kaifa yu guanli
To predict the economic losses caused by disasters affecting marine aquaculture equipment and to ensure the healthy development of the marine aquaculture industry, this study analyzes and forecasts the losses of marine aquaculture equipment in the ...
LI Xurui, DONG Dibo, GUO Qiaoying
doaj  

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

Advanced Experiment Design Strategies for Drug Development

open access: yesAdvanced Intelligent Discovery, EarlyView.
Wang et al. analyze 592 drug development studies published between 2020 and 2024 that applied design of experiments methodologies. The review surveys both classical and emerging approaches—including Bayesian optimization and active learning—and identifies a critical gap between advanced experimental strategies and their practical adoption in ...
Fanjin Wang   +3 more
wiley   +1 more source

A Physics Constrained Machine Learning Pipeline for Young's Modulus Prediction in Multimaterial Hyperelastic Cylinders Guided by Contact Mechanics

open access: yesAdvanced Intelligent Discovery, EarlyView.
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas   +4 more
wiley   +1 more source

Organic photovoltaic prediction model based on Bayesian optimization and explainable AI. [PDF]

open access: yesSci Rep
Abdelghafar S   +4 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy